Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 771 Accesses

Abstract

In supercritical water, many nanocrystal oxides/oxide composites were produced rapidly (0.4 s∼2 min) in a flow reactor or in a batch reactor for long time synthesis (e.g., 25 h) [1]. The SCW synthesis can be used for the production of ferrite magnetic pigments in recording media [Fe3O4, MFe2O4 (M = Co, Ni, Zn), NixCo1−xFe2O4, BaO•6Fe2O3], YAG: Tb phosphor for cathode ray tube screen, materials for lithium ion battery cathode (LiCoO2, LiMn2O4), catalysts for car exhausts [e.g., Ce1−xZrxO2 (x = 0–1), Zr1−xInxO2, Zr1−xYxO2], oxidation (La2CuO4) and gasification (ZrO2, CeO2, Ni), photo-catalysts (e.g., K2Ti6O13, ZnO, TiO2) for water decomposition, materials used in supporting of catalysts (e.g., boehmite; AlOOH) and materials (SnO2, ZnO, In2O3) for electronics industry,.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.B. Yahya, H. Hayashi, T. Nagase, T. Ebina, Y. Onodera, N. Saitoh, Hydrothermal synthesis of potassium hexatitanates under subcritical and supercritical water conditions and its application in photocatalysis. Chem. Mater. 13, 842–847 (2001)

    Article  CAS  Google Scholar 

  2. T. Adschiri, K. Kanazawa, K. Arai, Rapid and continuous hydrothermal synthesis of boehmite particles in subcritical and supercritical water. J. Am. Ceram. Soc. 75, 2615–2618 (1992)

    Article  CAS  Google Scholar 

  3. T. Adschiri, K. Kanazawa, K. Arai, Rapid and continuous hydrothermal crystllization of metal oxides particles in supercritical water. J. Am. Ceram. Soc. 75, 1019–1022 (1992)

    Article  CAS  Google Scholar 

  4. M. Schubert, J.W. Regler, F. Vogel, Continuous salt precipitation and separation from supercritical water. Part 1: Type 1 salts. J. Supercrit. Fluids 52, 99–112 (2010)

    Article  CAS  Google Scholar 

  5. M. Schubert, J.W. Regler, F. Vogel, Continuous salt precipitation and separation from supercritical water. Part 2. Type 2 salts and mixtures of two salts. J. Supercrit. Fluids 52, 113–124 (2010)

    Article  CAS  Google Scholar 

  6. P.J. Blood, J.P. Denyer, B.J. Azzopardi, M. Poliakoff, E. Lester, A versatile flow visualisation technique for quantifying mixing in a binary system: application to continuous supercritical water hydrothermal synthesis (SWHS). Chem. Eng. Sci. 59(14), 2853–2861 (2004)

    Article  CAS  Google Scholar 

  7. H. Assaaoudi, Z. Fang, J.E. Barralet, A.J. Wright, I.S. Butler, J.A. Kozinski, Synthesis, characterization and properties of erbium-based nanofibers and nanorods. Nanotechnology 18, 445606 (7pp) (2007)

    Google Scholar 

  8. H. Assaaoudi, Z. Fang, I.S. Butler, J.A. Kozinski, Synthesis of erbium hydroxide microflowers and nanostructures in subcritical water. Nanotechnology 19, 185606 (8 pp) (2008)

    Google Scholar 

  9. W.A. Bassett, A.H. Shen, M. Bucknum, I.M. Chou, A new diamond-anvil cell for hydrothermal studies to 2.5 GPa and from –190°C to 1200°C. Rev. Sci. Instrum. 64, 2340–2345 (1993)

    Article  Google Scholar 

  10. R.L. Smith Jr., Z. Fang, Techniques, applications and future prospects of diamond anvil cells for studying supercritical water systems. J. Supercrit. Fluids 47, 431–446 (2009)

    Article  CAS  Google Scholar 

  11. T. Wang, R.L. Smith Jr., H. Inomata, K. Arai, Reactive phase behavior of aluminum nitrate in high temperature and supercritical water. Hydrometallurgy 65(2–3), 159–175 (2002)

    Article  CAS  Google Scholar 

  12. M. Takesue, K. Shimoyama, S. Murakami, Y. Hakuta, H. Hayashi, R.L. Smith, Phase formation of Mn-doped zinc silicate in water at high-temperatures and high-pressures. J. Supercrit. Fluids 43(2), 214–221 (2007)

    Article  CAS  Google Scholar 

  13. M. Takesue, K. Shimoyama, K. Shibuki, A. Suino, Y. Hakuta, H. Hayashi, Y. Ohishi, R.L. Smith, Formation of zinc silicate in supercritical water followed with in situ synchrotron radiation X-ray diffraction. J. Supercrit. Fluids 49(3), 351–355 (2009)

    Article  CAS  Google Scholar 

  14. K. Sue, Y. Hakuta, R.L. Smith Jr., T. Adschiri,, K. Arai, Solubility of lead(II) oxide and copper(II) oxide in subcritical and supercritical water. J. Chem. Eng. Data, 44, 1422–1426 (1999)

    Article  CAS  Google Scholar 

  15. M.N. Danchevskaya, Y.D. Ivakin, S.N. Torbin, G.P. Muravieva, The role of water fluid in the formation of fine-crystalline oxide structure. J. Supercrit. Fluids 42(3), 419–424 (2007)

    Article  CAS  Google Scholar 

  16. J.H. Lee, J.Y. Ham, Mechanisms for metal oxide particles synthesized in Supercritical water. J. Ind. Eng. Chem. 13(5), 835–841 (2007)

    CAS  Google Scholar 

  17. M. Uematsu, E.U. Franck, Static dielectric constant of water and steam. J. Phys. Chem. Ref. Data 9(6), 1291–1306 (1980)

    Article  CAS  Google Scholar 

  18. L.B. Kriksunov, D.D. Macdonald, Corrosion in supercritical water oxidation systems: A phenomenological analysis. J. Electrochem. Soc. 142(12), 4069–4073 (1995)

    Article  CAS  Google Scholar 

  19. Z. Fang, S. Xu, I.S. Butler, R.L. Smith Jr., J.A. Kozinski, Destruction of decachlorobiphenyl using supercritical water oxidation. Energy & Fuels 18(5), 1257–1265 (2004)

    Article  CAS  Google Scholar 

  20. Z. Fang, S.K. Xu, J.A. Kozinski, Flameless oxidation of chlorinated wastes in supercritical water using sodium carbonate as a stimulant. Proc. Combust. Inst. 29(2), 2485–2492 (2002)

    Article  CAS  Google Scholar 

  21. Z. Fang, S.K. Xu, R.L. Smith Jr., J.A. Kozinski, K. Arai, Destruction of deca-chlorobiphenyl in supercritical water under oxidizing conditions with and without Na2CO3. J. Supercrit. Fluids 33(3), 247–258 (2005)

    Article  CAS  Google Scholar 

  22. N. Boukis, N. Claussen, K. Ebert, R. Janssen, M. Schacht, Corrosion screening tests of high-performance ceramics in supercritical water containing oxygen and hydrochloric acid. J. Eur. Ceram. Soc. 17, 71–76 (1997)

    Article  CAS  Google Scholar 

  23. K.W. Downey, R.H. Snow, D.A. Hazlebeck, A.J. Roberts, Corrosion and chemical agent destruction: Research on supercritical water oxidation of hazardous military wastes. ACS Symp. Ser. 608, 313–326 (1995)

    Article  CAS  Google Scholar 

  24. P. Muthukumaran, R.B. Gupta, Sodium-carbonate-assisted supercritical water oxidation of chlorinated waste. Ind. Eng. Chem. Res. 39, 4555–4563 (2000)

    Article  CAS  Google Scholar 

  25. D.B. Mitton, J.H. Yoon, J.A. Cline, H.S. Kim, N. Eliaz, R.M. Latanision, Corrosion behavior of nickel-based alloys in supercritical water oxidation systems. Ind. Eng. Chem. Res. 39(12), 4689–4696 (2000)

    Article  CAS  Google Scholar 

  26. L.L. Toft, D.F. Aarup, M. Bremholm, P. Hald, B.B. Iversen, Comparison of T-piece and concentric mixing systems for continuous flow synthesis of anatase nanoparticles in supercritical isopropanol/water. J. Solid State Chem. 182(3), 491–495 (2009)

    Article  CAS  Google Scholar 

  27. E. Lester, P. Blood, J. Denyer, D. Giddings, B. Azzopardi, M. Poliakoff, Reaction engineering: The supercritical water hydrothermal synthesis of nano-particles. J. Supercrit. Fluids 37(2), 209–214 (2006)

    Article  CAS  Google Scholar 

  28. Y. Wakashima, A. Suzuki, S. Kawasaki, K. Matsui, Y. Hakuta, Development of a new swirling micro mixer for continuous hydrothermal synthesis of nano-size particles. J. Chem. Eng. Jpn. 40(8), 622–629 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Fang .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fang, Z. (2010). Conclusions and Future Prospects. In: Rapid Production of Micro- and Nano-particles Using Supercritical Water. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12987-2_7

Download citation

Publish with us

Policies and ethics