Skip to main content

Nano-Structured Coatings

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Carbide ceramics were coated with a nano-structured carbon film (10 nm∼1 μm) that could reduce the friction coefficient by SCW treatment. SCW is very corrosive to a stainless steel made reactor particularly when acids and oxygen are added or formed. At such conditions, the reactor was corroded to form water soluble metal cations that were further hydrolyzed and subsequently dehydrated to fine metal oxide particles. In order to avoid corrosion, the reactor could be pretreated in SCW by adding metal salts [e.g., Ce(NO3)2] to form a metal oxide (e.g., CeO2) nano-structured layer on the wall surface. We can also protect the reactor by adding ionic light metal salts (e.g., NaCl, Na2CO3) in water that will precipitate to fine particles to form a layer on the wall at supercritical conditions. The fine salt particles can be obtained by removing them from supercritical solution after they are precipitated in SCW.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Y. Gogotsi, Nanostructured carbon coatings. NATO Sci. Ser. 3 High Technol. 78, 25–40 (2000)

    CAS  Google Scholar 

  2. N.S. Jacobson, Y.G. Gogotsi, M. Yoshimura, Thermodynamic and experimental study of carbon formation on carbides under hydrothermal conditions. J. Mater. Chem. 5, 595–601 (1995)

    Article  CAS  Google Scholar 

  3. Y.G. Gogotsi, M. Yoshimura, Formation of carbon films on carbides under hydrothermal conditions. Nature 367, 628–630 (1994)

    Article  CAS  Google Scholar 

  4. Y.G. Gogotsi, S. Welz, J. Daghfal, M.J. McNallan, I.D. Jeon, K.G. Nickel, T. Kraft, Formation of carbon coatings on SiC fibers by selective etching in halogens and supercritical water. Ceram. Eng. Sci. Proc. 19, 87–94 (1998)

    Article  CAS  Google Scholar 

  5. Y.G. Gogotsi, P. Kofstad, M. Yoshimura, K.G. Nickel, Formation of sp3-bonded carbon upon hydrothermal treatment of SiC. Diamond Relat. Mater. 5, 151–162 (1996)

    Article  CAS  Google Scholar 

  6. Z. Fang, S. Xu, I.S. Butler, R.L. Smith Jr., J.A. Kozinski, Destruction of decachlorobiphenyl using supercritical water oxidation. Energy & Fuels 18(5), 1257–1265 (2004)

    Article  CAS  Google Scholar 

  7. X. Gao, X. Wu, Z. Zhang, H. Guan, E. Han, Characterization of oxide films grown on 316L stainless steel exposed to H2O2-containing supercritical water. J. Supercrit. Fluids 42(1), 157–163 (2007)

    Article  CAS  Google Scholar 

  8. P.A. Marrone, G.T. Hong, Corrosion control methods in supercritical water oxidation and gasification processes. J. Supercrit. Fluids 51(2), 157–163 (2009)

    Article  Google Scholar 

  9. J. Konys, S. Fodi, J. Hausselt, H. Schmidt, V. Casal, Corrosion of high-temperature alloys in chloride-containing supercritical water oxidation systems. Corrosion 55(1), 45–51 (1999)

    Article  CAS  Google Scholar 

  10. V.S. Rao, H.S. Kwon, Reactor corrosion in ceria production by hydrothermal synthesis under supercritical conditions. Corrosion 63(4), 359–365 (2007)

    Article  CAS  Google Scholar 

  11. W. Habicht, N. Boukis, G. Franz, O. Walter, E. Dinjus, Exploring hydrothermally grown potassium titanate fibers by STEM-in-SEM/EDX and XRD. Microsc. Microanal. 12(4), 322–326 (2006)

    Article  CAS  Google Scholar 

  12. J.W. Tester, H.R. Holgate, F.J. Armellini, P.A. Webley, W.R. Killilea, G.T. Hong, H.E. Barner, Supercritical water oxidation technology: Process development and fundamental research. ACS Symp. Ser. 518, 35–76 (1993)

    Article  CAS  Google Scholar 

  13. K.S. Pitzer, R.T. Pabalan, Thermodynamics of sodium chloride in steam. Geochim. Cosmochim. Acta 50, 1445–1454 (1986)

    Article  CAS  Google Scholar 

  14. I. Martynova, Solubility of inorganic compounds in subcritical and supercritical water. Int. Corros. Conf. Ser. NACE-4 (High Temp. High Pressure Electrochem. Aqueous Solutions, Conf.) 131–138 (1976)

    Google Scholar 

  15. P. Dell’Orco, H. Eaton, T. Reynolds, S. Buelow, The solubility of 1:1 nitrate electrolytes in supercritical water. J. Supercrit. Fluids 8, 217–227 (1995)

    Article  Google Scholar 

  16. K. Sue, Y. Hakuta, R.L. Smith Jr., T. Adschiri, K. Arai, Solubility of lead(II) oxide and copper(II) oxide in subcritical and supercritical water. J. Chem. Eng. Data 44, 1422–1426 (1999)

    Article  CAS  Google Scholar 

  17. P. Muthukumaran, R.B. Gupta, Sodium-carbonate-assisted supercritical water oxidation of chlorinated waste. Ind. Eng. Chem. Res. 39, 4555–4563 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Fang .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fang, Z. (2010). Nano-Structured Coatings. In: Rapid Production of Micro- and Nano-particles Using Supercritical Water. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12987-2_4

Download citation

Publish with us

Policies and ethics