Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Hydrothermal synthesis of particles is usually carried out at subcritical conditions in batch reactors. In supercritical region, reaction rate increases dramatically due to low dielectric constant (ɛ) of SCW. Therefore, fine particles (e.g., metal oxides) are rapidly synthesized (e.g., 0.4 s∼2 min) in a continuous SCW process. In the oxide synthesis, an ionic metal salt is first hydrolyzed to metal hydroxide, which is then dehydrated to form metal oxide crystals by precipitating from SCW solution. Here, three types of reactors (batch, flow and diamond anvil cell) are introduced in details for the study of SCW synthesis of particles. In general, batch reactors are used for long time process, and flow reactors for short time synthesis. Diamond anvil cell is used for in-situ visual and spectroscopic study of particle formation. Continuous flow reactors allow a better control of experimental conditions (e.g., temperature, pressure, time, concentration, pH and heating rate) that lead to formation of smaller particles with uniform size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Masui, Y. Peng, K. Machida, G. Adachi, Reduction behavior of CeO2–ZrO2 solid solution prepared from cerium zirconyl oxalate. Chem. Mater. 10, 4005–4009 (1998)

    Article  CAS  Google Scholar 

  2. M. Yashima, K. Morimoto, N. Ishizawa, M. Yoshimura, Zirconia-ceria solid solution synthesis and the temperature-time-transformation diagram for the 1:1 composition. J. Am. Ceram. Soc. 76, 1745–1750 (1993)

    Article  CAS  Google Scholar 

  3. C. de Leitenburg, A. Trovarelli, F. Zamar, S. Maschio, G. Dolcetti, J. Llorca, A novel and simple route to catalysts with a high oxygen storage capacity: The direct room-temperature synthesis of CeO2–ZrO2 solid solutions. J. Chem. Soc. Chem. Commun. 21, 2181–2182 (1995)

    Article  Google Scholar 

  4. A. Deptula, M. Carewska, T. Olczak, W. Lada, F. Croce, Sintering of zirconia-ceria spherical powders prepared by a water extraction variant of the sol-gel process. J. Electrochem. Soc. 140, 2294–2297 (1993)

    Article  CAS  Google Scholar 

  5. S. Hirano, T. Yogo, K. Kikuta, E. Asai, K. Sugiyama, H.Yamamoto, Preparation and phase separation behavior of cobalt iron oxide ((Co,Fe)3O4) films. J. Am. Ceram. Soc. 76, 1788–1792 (1993)

    Article  CAS  Google Scholar 

  6. J.F. Hochepied, P. Bonville, M.P. Pileni, Nonstoichiometric zinc ferrite nanocrystals: syntheses and unusual magnetic properties. J. Phys. Chem. B 104, 905–912 (2000)

    Article  CAS  Google Scholar 

  7. T. Masui, K. Fujiwara, Y. Peng, T. Sakata, K. Machida, H. Mori, G. Adachi, Characterization and catalytic properties of CeO2–ZrO2 ultrafine particles prepared by the microemulsion method. J. Alloys Compd. 269, 116–122 (1998)

    Article  CAS  Google Scholar 

  8. M. Kiyama, The formation of manganese and cobalt ferrites by the air oxidation of aqueous suspensions and their properties. Bull. Chem. Soc. Jpn. 51, 134–138 (1978)

    Article  CAS  Google Scholar 

  9. T. Kodama, Y. Wada, T. Yamamoto, M. Tsuji, Y. Tamaura, Synthesis and characterization of ultrafine nickel(II)-bearing ferrites (NixFe3–xO4, x = 0.14–1.0). J. Mater. Chem. 5, 1413–1418 (1995)

    Article  CAS  Google Scholar 

  10. B. Djuricic, D. McGarry, S. Pickering, The preparation of ultrafine ceria-stabilized zirconia particles coated with yttria. J. Mater. Sci. Lett. 12(16), 1320–1323 (1993)

    Article  CAS  Google Scholar 

  11. A. Cabanas, M. Poliakoff, The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water. J. Mater. Chem. 11, 1408–1416 (2001)

    Article  CAS  Google Scholar 

  12. G.W. Morey, P. Niggli, Hydrothermal formation of silicates, a review. J. Am. Chem. Soc. 35, 1086–1130 (1913)

    Article  CAS  Google Scholar 

  13. A. Rabenau, The role of hydrothermal synthesis in preparative chemistry. Angew. Chem. 97, 1017–1032 (1985)

    Article  CAS  Google Scholar 

  14. R. Gainsford, M.J. Sisley, T.W. Swaddle, P. Bayliss, Hydrothermal formation of ferrite spinels. Can. J. Chem. 53, 12–19 (1975)

    Article  CAS  Google Scholar 

  15. H. Kumazawa, K. Oki, H.M. Cho, E. Sada, Hydrothermal synthesis of ultrafine ferrite particles. Chem. Eng. Commun. 115, 25–33 (1992)

    Article  CAS  Google Scholar 

  16. T. Adschiri, K. Kanazawa, K. Arai, Rapid and continuous hydrothermal synthesis of boehmite particles in subcritical and supercritical water. J. Am. Ceram. Soc. 75, 2615–2618 (1992)

    Article  CAS  Google Scholar 

  17. T. Adschiri, K. Kanazawa, K. Arai, Rapid and continuous hydrothermal crystllization of metal oxides particles in supercritical water. J. Am. Ceram. Soc. 75, 1019–1022 (1992)

    Article  CAS  Google Scholar 

  18. K. Sue, N. Kakinuma, T. Adschiri, K. Arai, Continuous production of nickel fine particles by hydrogen reduction in near-critical water. Ind. Eng. Chem. Res. 43(9), 2073–2078 (2004)

    Article  CAS  Google Scholar 

  19. R.L. Smith Jr., P. Atmaji, Y. Hakuda, Y. Kawaguchi, T. Adschiri, K. Arai, Recovery of metals from simulated high-level liquid waste with hydrothermal crystallization. J. Supercrit. Fluids 11(1,2), 103–114 (1997)

    Article  CAS  Google Scholar 

  20. Z. Fang, S.K. Xu, J.A. Kozinski, Behavior of metals during combustion of industrial organic wastes in supercritical water. Ind. Eng. Chem. Res. 39(12), 4536–4542 (2000)

    Article  CAS  Google Scholar 

  21. T. Adschiri, Y. Hakuta, K. Arai, Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Ind. Eng. Chem. Res. 39, 4901–4907 (2000)

    Article  CAS  Google Scholar 

  22. Inorganic Chem. group, Dalian S&T university, Inorganic Chemistry (in Chinese) (Higher education press, Beijing, China, 1990), p. 645

    Google Scholar 

  23. W. Wagner, A. Pruss, The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31(2), 387–535 (2002)

    Article  CAS  Google Scholar 

  24. Y. Hakuta, T. Adschiri, T. Suzuki, T. Chida, K. Seino, K. Arai, Flow method for rapidly producing barium hexa-ferrite particles in supercritical water. J. Am. Ceram. Soc. 81, 2461–2464 (1998)

    Article  CAS  Google Scholar 

  25. A.A. Galkin, B.G. Kostyuk, N.N. Kuznetsova, A.O. Turakulova, V.V. Lunin, M. Polyakov, Unusual approaches to the preparation of heterogeneous catalysts and supports using water in subcritical and supercritical states. Kinetika i kataliz 42, 172–181 (2001)

    Google Scholar 

  26. R.B. Yahya, H. Hayashi, T. Nagase, T. Ebina, Y. Onodera, N. Saitoh, Hydrothermal synthesis of potassium hexatitanates under subcritical and supercritical water conditions and its application in photocatalysis. Chem. Mater. 13, 842–847 (2001)

    Article  CAS  Google Scholar 

  27. W.A. Bassett, A.H. Shen, M. Bucknum, I.M. Chou, A new diamond-anvil cell for hydrothermal studies to 2.5 GPa and from –190 °C to 1200 °C. Rev. Sci. Instrum. 64, 2340–2345 (1993)

    Article  Google Scholar 

  28. R.L. Smith Jr., Z. Fang, Techniques, applications and future prospects of diamond anvil cells for studying supercritical water systems. J. Supercrit. Fluids 47, 431–446 (2009)

    Article  CAS  Google Scholar 

  29. Z. Fang, Complete Dissolution and Oxidation of Organic Wastes in Water, VDM Verlag Dr. Müller Aktiengesellschaft & Co. KG, Saarbrücken, Germany, ISBN 9783639144246, 192 pages, Apr. 2009.

    Google Scholar 

  30. H. Assaaoudi, Z. Fang, I.S. Butler, J.A. Kozinski, Synthesis of erbium hydroxide microflowers and nanostructures in subcritical water. Nanotechnolgy 19, 185606 (8 pp) (2008)

    Google Scholar 

  31. Z. Fang, R.L. Smith Jr., H. Inomata, K. Arai, Phase behavior and reaction of polyethylene terephthalate-water systems at pressures up to 173 MPa and temperatures up to 490 °C. J. Supercrit. Fluids 15, 229–243 (1999)

    Article  CAS  Google Scholar 

  32. Z. Fang, R.L. Smith Jr., H. Inomata, K. Arai, Phase behavior and reaction of polyethylene in supercritical water at pressure up to 2.6 GPa and temperature up to 670°C. J. Supercrit. Fluids 16, 207–216 (2000)

    Article  CAS  Google Scholar 

  33. R.A. Forman, G.J. Piermarini, J.D. Barnett, S. Block, Pressure measurement made by the utilization of ruby sharp-line luminescence. Science 176, 284–285 (1972)

    Article  CAS  Google Scholar 

  34. D. Schiferl, M. Nicol, J.M. Zaug, S.K. Sharma, T.F. Cooney, S.-Y. Wang, T.R. Anthony, J.F. Fleischer, The diamond 13C/12C isotope Raman pressure sensor system for high-temperature/pressure diamond-anvil cells with reactive samples. J. Appl. Phys. 82 3256–3265 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Fang .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fang, Z. (2010). Supercritical Water Process. In: Rapid Production of Micro- and Nano-particles Using Supercritical Water. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12987-2_2

Download citation

Publish with us

Policies and ethics