Skip to main content

Optical Probes

  • Chapter
Small Animal Imaging

Abstract

The application of optical imaging technologies for drug discovery research and the development of novel preclinical animal models has expanded with tremendous vigor in the past few years. The fact that fluorescent dyes can be detected at low concentrations and nonionizing and harmless radiation is applied with rather low technical effort makes optical techniques attractive for routine use in the animal imaging laboratory. Novel imaging probes and contrast agents have been designed in a broad variety addressing the various requirements given by the disease problem at the preclinical animal imaging stage. Moreover, the industry has identified this field as a market from the side both the imaging equipment and the fluorescent probes applied as readily injectable contrast agents or reactive labels for bioconjugation chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achilefu S (2004) Lighting up tumors with receptor-specific optical molecular probes. Technol Cancer Res Treat 3:393–409

    PubMed  CAS  Google Scholar 

  • Azar S, Intes X (2008) Translational multimodality optical imaging. Artech House, Boston

    Google Scholar 

  • Barnett EM, Zhang X, Maxwell D, Chang Q, Piwnica-Worms D (2009) Single-cell imaging of retinal ganglion cell apoptosis with a cell-penetrating, activatable peptide probe in an in vivo glaucoma model. Proc Natl Acad Sci USA 106:9391–9396

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, Wiedenmann B, Grötzinger C (2001) Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nat Biotechnol 19:327–331

    Article  PubMed  CAS  Google Scholar 

  • Bentolila LA, Ebenstein Y, Weiss S (2009) Quantum dots for in vivo small-animal imaging. J Nucl Med 50:493–496

    Article  PubMed  CAS  Google Scholar 

  • Bremer C, Tung CH, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7:743–748

    Article  PubMed  CAS  Google Scholar 

  • Fischer T, Gemeinhardt I, Wagner S, Stieglitz DV, Schnorr J, Hermann KG, Ebert B, Petzelt D, Macdonald R, Licha K, Schirner M, Krenn V, Kamradt T, Taupitz M (2006) Assessment of unspecific near-infrared dyes in laser-induced fluorescence imaging of experimental arthritis. Acad Radiol 13:4–13

    Article  PubMed  Google Scholar 

  • Foster AE, Kwon S, Ke S, Lu A, Eldin K, Sevick-Muraca E, Rooney CM (2008) In vivo fluorescent optical imaging of cytotoxic T lymphocyte migration using IRDye800CW near-infrared dye. Appl Opt 47:5944–5952

    Article  PubMed  CAS  Google Scholar 

  • Hermanson GT (1996) Bioconjugate techniques. Academic, San Diego

    Google Scholar 

  • Klohs J, Steinbrink J, Bourayou R, Mueller S, Cordell R, Licha K, Schirner M, Dirnagl U, Lindauer U, Wunder A (2009) Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice. J Neurosci Methods 180(1):126–32

    Article  PubMed  CAS  Google Scholar 

  • Lee SB, Hassan M, Fisher R, Chertov O, Chernomordik V, Kramer-Marek G, Gandjbakhche A, Capala J (2008) Affibody molecules for in vivo characterization of HER2-positive tumors by near-infrared imaging. Clin Cancer Res 14:3840–3849

    Article  PubMed  CAS  Google Scholar 

  • Licha K, Schirner M, Henry G (2008) Optical agents. In: Schwaiger M (ed) Handbook of experimental pharmacology, vol 185, part 2. Springer, Heidelberg, pp 203–222

    Google Scholar 

  • Licha K, Olbrich C (2005) Optical imaging in drug discovery and diagnostic applications. Adv Drug Delivery Rev 57:1087–1108

    Article  CAS  Google Scholar 

  • Mier W, Beijer B, Graham K, Hull WE (2002) Fluorescent somatostatin receptor probes for the intraoperative detection of tumor tissue with long-wavelength visible light. Bioorg Med Chem 10:2543–2552

    Article  PubMed  CAS  Google Scholar 

  • Moon WK, Lin Y, O’Loughlin T, Tang Y, Kim DE, Weissleder R, Tung CH (2003) Enhanced tumor detection using a folate receptor-targeted near-infrared fluorochrome conjugate. Bioconjug Chem 14:539–545

    Article  PubMed  CAS  Google Scholar 

  • Pauli J, Vag T, Haag R, Spieles M, Wenzel M, Kaiser WA, Resch-Genger U, Hilger I (2009) An in vitro characterization study of new near infrared dyes for molecular imaging. Eur J Med Chem 44:3496–3503

    Article  PubMed  CAS  Google Scholar 

  • Quadir QA, Radowski MR, Kratz F, Licha K, Hauff P, Haag R (2008) Dendritic multishell architectures for drug and dye transport. J Control Release 132:289–294

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen JC, Tan IC, Marshall MV, Fife CE, Sevick-Muraca EM (2009) Lymphatic imaging in humans with near-infrared fluorescence. Curr Opin Biotechnol 20:74–82

    Article  PubMed  CAS  Google Scholar 

  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 9:763–775

    Article  Google Scholar 

  • Richards G, Soubrane G, Yanuzzi L (1998) Fluorescein and ICG angiography. Thieme, Germany

    Google Scholar 

  • Stefflova K, Chen J, Zheng G (2007) Using molecular beacons for cancer imaging and treatment. Front Biosci 12:4709–4721

    Article  PubMed  CAS  Google Scholar 

  • Tung CH (2004) Fluorescent peptide probes for in vivo diagnostic imaging. Biopolymers 76:391–403

    Article  PubMed  CAS  Google Scholar 

  • Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angew Chem Int Ed 47:1184–1201

    Article  CAS  Google Scholar 

  • Wall A, Persigehl T, Hauff P, Licha K, Schirner M, Müller S, von Wallbrunn A, Matuszewski L, Heindel W, Bremer C (2008) Differentiation of angiogenic burden in human cancer xenografts using a perfusion-type optical contrast agent (SIDAG). Breast Cancer Res 10:R23

    Article  PubMed  Google Scholar 

  • Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17:375–378

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Licha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Licha, K. (2011). Optical Probes. In: Kiessling, F., Pichler, B. (eds) Small Animal Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12945-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12945-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12944-5

  • Online ISBN: 978-3-642-12945-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics