Skip to main content

Cryptanalysis of Two Quartic Encryption Schemes and One Improved MFE Scheme

  • Conference paper
Post-Quantum Cryptography (PQCrypto 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6061))

Included in the following conference series:

Abstract

MFE, a multivariate public key encryption scheme proposed by Wang et al in CT-RSA 2006, was conquered by second order linearization equation (SOLE) attack by Ding et al in PKC 2007. To resist this attack, many improved schemes were proposed. Wang et al in [WFW09 and Wang in [Wan07] both modified MFE and raised the public key from quadratic to quartic equations. We call the two quartic schemes Quartic-1 and Quartic-2 respectively for convenience. They are indeed immune to the SOLE attack. However, we find that there exist many quadratization equations (QEs), which are quadratic in plaintext variables and linear in ciphertext variables and can be derived from the public keys of Quartic-1 and Quartic-2. In this paper, we utilize QEs to recover the corresponding plaintext for a given ciphertext. For Quartic-1, we firstly find there are at least 2r SOLEs, which was regarded as impossible by the original authors, furthermore, we can find at least 35r QEs with a complexity \(\mathcal {O}((90r^2(15r+1)+180r^2+15r(15r+1)/2+27r+1)^w)\), where r is a small number denoting the degree of extension of finite fields and w ≈ 2.732. The computational complexity of deriving these equations is about 237. But to find the original plaintext, there still needs 240 times Gröbner basis computations, which needs practically 1.328 seconds each time. For Quartic-2, we make a theoretical analysis and find 18r QEs with a computational complexity \(\mathcal {O}((15r+1)6r(12r+1)+180r^2+27r+1)^w\). The complexity is 236 for the parameter proposed in [Wan07], and we can break the scheme practically in 3110.734 seconds. Finally, we show that another improved version of MFE in [WZY07] is insecure against the linearization equation attack although its authors claimed it is secure against high order linearization equation attack. Our attack on the two quartic schemes illustrates that non-linearization equations like quadratization equations which are not degree one in plaintext variables can also be used efficiently to analyze multivariate cryptosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on Information Theory 22, 644–654 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ding, J., Gower, J., Schmidt, D.: Multivariate Public-Key Cryptosystems. In: Advances in Information Security. Springer, Heidelberg (2006) ISBN 0-387-32229-9

    Google Scholar 

  3. Ding, J., Hu, L., Nie, X., Li, J., Wagner, J.: High Order Linearization Equation (HOLE) Attack on Multivariate Public Key Cryptosystems. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 233–248. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Faugère, J.: A New Efficient Algorithm for Computing Gröbner Bases (F4). Journal of Applied and Pure Algebra 139, 61–88 (1999)

    Article  MATH  Google Scholar 

  5. Patarin, J.: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)

    Google Scholar 

  6. Shor, P.: Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing 26, 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Wang, Z.: An Improved Medium-Field Equation (MFE) Multivariate Public Key Encryption Scheme. In: IIH-MISP (2007), http://bit.kuas.edu.tw/~iihmsp07/accepted_list_general_session.html

  8. Wang, X., Feng, F., Wang, X., Wang, Q.: A More Secure MFE Multivariate Public Key Encryption Scheme. International Journal of Computer Science and Applications 6(3), 1–9 (2009), http://www.tmrfindia.org/ijcsa/v6i31.pdf

    Google Scholar 

  9. Wang, L., Yang, B., Hu, Y., Lai, F.: A Medium-Field Multivariate Public Key Encryption Scheme. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 132–149. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Wang, Z., Zheng, S., Yang, Y., et al.: Improved Medium- Field Multivariate Public Key Encryption. Journal of University of Electonic Science an Technology of China 36(6), 1152–1154 (2007) (in Chinese)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cao, W., Nie, X., Hu, L., Tang, X., Ding, J. (2010). Cryptanalysis of Two Quartic Encryption Schemes and One Improved MFE Scheme. In: Sendrier, N. (eds) Post-Quantum Cryptography. PQCrypto 2010. Lecture Notes in Computer Science, vol 6061. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12929-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12929-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12928-5

  • Online ISBN: 978-3-642-12929-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics