Advertisement

Design of Sensors for Position Control of Microactuators

  • A. Kornfeld
  • C. Kolleck
  • A. Ostendorf
Chapter
Part of the Microtechnology and MEMS book series (MEMS)

Abstract

For position control of a microlinear motor, an interferometrical principle was combined with an incremental sensing method, in order to achieve a resolution below 100 nm. A reflection grating placed on the moving slide is coherently illuminated by a laser beam, to allow the first two orders of the reflected beam to interfere with each other in an optical 3×3 coupler. The beat signal induced by the movement of the grating is detected as an intensity modulation in three phase-shifted output signals. The evaluation of these signals enables the measurement of both the distance and the direction of the slide’s movement. The required technologies for the manufacturing, preparation, alignment, and assembly of the involved optical elements were applied. This includes refractive-index modification of glass, the adaptation of microgrippers, the microlens layout and selection, and the UV-curing of elements. The detection and the real time signal processing were realized, based on photodiode arrays and LabVIEW algorithms, respectively.

Keywords

Field Programmable Gate Array Microlens Array Coupling Length Fiber Coupler Waveguide Coupler 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flügge J (1996) Vergleichende Untersuchungen zur messtechnischen Leistungsfähigkeit von Laserinterferometern und inkrementellen Masstabmesssystemen. PTB-Ber. F-23, Diss., Phys.-Tech. Bundesanst.Google Scholar
  2. 2.
    Hoxhold B, Kirchhoff M, Bütefisch S, Büttgenbach S (2006) Sma driven micro grippers combining piezo-resistive gripping force sensors with epon su-8 mechanics. In: Proc. Eurosensors, vol 2, pp 190–191Google Scholar
  3. 3.
    Kärcher B, Schreiber P, Fischer A, et al (2005)Mikrooptischer Positionssensor. In: Proc. of Mikrosystemtechnik-KongressGoogle Scholar
  4. 4.
    Kornfeld A, Stute U, Ostendorf A, et al (2004) Herstellung integriertoptischer Wellenleiter durch Excimer- und fs-Pulslaser für die interferometrische Positionsregelung. In: Jahrest. der DGaO, 105-B31Google Scholar
  5. 5.
    Kornfeld A, Bärsch N, Kracht D, Ostendorf A (2008) Integrated optical micro structures for signal processing in the position metrology. J of Microsys Techn 14:1955–1960, dOI:  10.1007/s00542-008-0638-8 CrossRefGoogle Scholar
  6. 6.
    Kornfeld A, Kolleck C, Ostendorf A (2009) Evaluation, Justage und Fixierung mikrooptischer Bauelemente zur Integration eines Interferometrischen Positionssensors. In: 4. Koll. Mikroproduktion, BIAS-Verlag, pp 171–176Google Scholar
  7. 7.
    Kowalevicz M, Sharma V, Ippen E, et al (2005) Three-dimensional photonic devices fabricated in glass using a femtosecond laser oscillator. Opt Lett 21:1060–1062CrossRefGoogle Scholar
  8. 8.
    Morgner U (2008) Ultrakurz, Ultrastark, Ultrapräzise. In: 2. Workshop Optische Technologien, PZH-Verlag, pp 114–133Google Scholar
  9. 9.
    Osellame R, Chiodo N, Maselli Vea (2005) Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator. Opt Expr 13:612–620CrossRefGoogle Scholar
  10. 10.
    Szameit A, Dreisow F, Heinrich M, Pertsch T, Nolte S, Tünnermann A (2007) Coupling management of fs laser written waveguides. In: Proc. of SPIE, vol 6460, 0277-786X, 64600V-1 - V11Google Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laser Zentrum HannoverHanoverGermany

Personalised recommendations