Wear Behavior in Microactuator Interfaces

  • R. Bandorf
  • F. Pape
  • H. H. Gatzen
  • G. Bräuer
Part of the Microtechnology and MEMS book series (MEMS)


The growing number of active microsystems applications leads to a demand for enhanced reliability and durability of the moving microparts. The lifetime of the microsystems is closely related to protective coatings on the mating surfaces. This chapter deals with the improvement of the microwear resistance of various thin films, the deposition techniques, and the analysis tools on the microscale. The thin films were prepared using Physical Vapor Deposition (PVD) and Plasma Enhanced Chemical Vapor Deposition (PECVD). From a variety of coatings, the most promising results were gained for carbon based films. The typical film thickness was in a range of a few hundred nanometer. The micro-/nanowear was investigated by an Atomic Force Microscope (AFM) based under single asperity contact by methods of nanoindentation and nanoscratch testing. For an investigation of multi asperity contact specific test equipment was set up for characterization under rotating and oscillating motion. Along with the improvement by the coatings it was found that additionally the substrate material plays an important role for the microtribological system.


Abrasive Wear Physical Vapor Deposition Plasma Enhance Chemical Vapor Deposition Test Body Abrasive Wear Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bandorf R, Lüthje H, Schiffmann K, Staedler T, Wortmann A (2002) Sub-micron coatings with low friction and wear for micro actuators. Microsystem Technologies 8(1):51–54CrossRefGoogle Scholar
  2. 2.
    Bandorf R, Lüthje H, Schiffmann K, Beck M, Gatzen H, Schmidt M, Büttgenbach S, Bräuer G (2004) Sub-micron coatings with low friction and wear for micro actuators. Microsystem Technologies 10(3):223–226CrossRefGoogle Scholar
  3. 3.
    Bandorf R, Lüthje H, Staedler T (2004) Influencing factors on microtribology of dlc films for MEMS and microactuators. Diamond and Related Materials 13(4-8):1491–1493CrossRefGoogle Scholar
  4. 4.
    Bandorf R, Lüthje H, Henke C, Wiebe J, Sick J, Küster R (2005) Different carbon based thin films and their microtribological behaviour in mems applications. Surface and Coatings Technology 200(56):1777–1782Google Scholar
  5. 5.
    Bandorf R, Luthje H, Kuster R, Sick J (2006) Microtribology: Carbon based coatings on micro structured surfaces. In: Proceedings of the Annual Technical Conference-Society of Vacuum Coaters, vol 49, p 554Google Scholar
  6. 6.
    Beck M (2004) Increase of the wear resistance of micro-components. Dissertation, Leibniz Universität HannoverGoogle Scholar
  7. 7.
    Bhattacharya A, Nix W (1988) Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates. International Journal of Solids and Structures 24(12):1287–1298CrossRefGoogle Scholar
  8. 8.
    Chapman B (1980) Glow discharge processes: sputtering and plasma etching. Wiley New YorkGoogle Scholar
  9. 9.
    Doerner M, Nix W (1986) A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 1(4):601–609CrossRefGoogle Scholar
  10. 10.
    Frey H, D¨obele H (1995) Vakuumbeschichtung. 1. Plasmaphysik- Plasmadiagnostik-Analytik. VDI-Verl.Google Scholar
  11. 11.
    Gao H, Chiu C, Lee J (1992) Elastic contact versus indentation modeling of multi-layered materials. International Journal of Solids and Structures 29(20):2471–2492CrossRefGoogle Scholar
  12. 12.
    Gatzen HH (2009) Magnetic micro electro-mechanical systems for sensor and actuator applications. ECSGoogle Scholar
  13. 13.
    Gatzen HH, Beck M (2003) Nano-roughness standards with a very low roughness value. In: Proceedings euspen 4th Int. Top. Conf., vol 2, pp 495–498Google Scholar
  14. 14.
    Gatzen HH, Beck M (2003) Wear of single crystal silicon as a function of surface roughness. Wear 254(9):907–910CrossRefGoogle Scholar
  15. 15.
    Gatzen HH, Cvetkovic S (2007) Modellierung des CMP-Prozesses zum Planarisieren von Mikrosystemen. In: 63. Jahrbuch Schleifen. Honen, Läppen und Polieren, Vulkan VerlagGoogle Scholar
  16. 16.
    Haefer R (1987) Oberflächen-und Dünnschicht-Technologie. Springer BerlinGoogle Scholar
  17. 17.
    Korsunsky A, McGurk M, Bull S, Page T (1998) On the hardness of coated systems. Surface and Coatings Technology 99(1):171–182CrossRefGoogle Scholar
  18. 18.
    Küster R (2006) Mikrotribologische Untersuchungen dünner Schichten unter Anwendung rastersondenbasierter Verfahren, Dissertation, vol 1. Fraunhofer IRB Verlag, StuttgartGoogle Scholar
  19. 19.
    Kuster R, Schiffmann K (2004) Nano-scratch testing on thin diamondlike carbon coatings for microactuators: friction, wear and elastic-plastic deformation. Zeitschrift für Metallkunde 95(5):306–310Google Scholar
  20. 20.
    Küster R, Bandorf R, Lüthje H, Bräuer G, Gatzen HH, Neumeister C (2005) Verschleisarme Beschichtungen für MikroaktorenGoogle Scholar
  21. 21.
    Maboudian R, Carraro C (2004) Surface chemistry and tribology of mems. Annual review of physical chemistry 55:35–54CrossRefGoogle Scholar
  22. 22.
    Mattox D (1989) Particle bombardment effects on thin-film deposition: A review. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 7:1105Google Scholar
  23. 23.
    Oliver W, Pharr G (1992) Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research 7(6):1564–1583CrossRefGoogle Scholar
  24. 24.
    Pape F, Küster R, Bandorf R, Bräuer G, Gatzen HH (2007) Nano-scratch studies on diamond-like carbon coatings on various materials applied in micro actuators. In: GFT Tribologie-Fachtagung, GFT, vol 1, pp 28/1–28/10Google Scholar
  25. 25.
    Paulkowski D, Bandorf R, Achilles S, Pape F, Gatzen HH, Bräuer G (2008) Studies on diamond-like carbon coatings for the application in micro actuators. Advanced engineering materials 10(7):644–647CrossRefGoogle Scholar
  26. 26.
    Schmidt M, Wortmann A, Lüthje H, Büttgenbach S (2001) Novel equipment for friction force measurement on mems and microcomponents. In: Proceedings of SPIE, vol 4407, p 158CrossRefGoogle Scholar
  27. 27.
    Smidt FA (1990) Use of ion beam assisted deposition to modify the microstructure and properties of thin films. International Materials Reviews 35(1):61–128Google Scholar
  28. 28.
    Staedler T (2001) Mechanische und tribologische Charakterisierung dünner Schichten mit Hilfe rastersondenbasierter Verfahren, Dissertation, vol 1. Fraunhofer IRB Verlag, StuttgartGoogle Scholar
  29. 29.
    Staedler T, Schiffmann K (2001) Correlation of nanomechanical and nanotribological behaviour of thin dlc coatings on different substrates. Surface Science 482–485(2):1125–1129CrossRefGoogle Scholar
  30. 30.
    Wortmann A (2002) Entwicklung einer Prüfmethode zur messtechnischen Evaluation abrasiver Verschleisresistenz auf der Mikroskala, Dissertation, vol 1. Fraunhofer IRB Verlag, StuttgartGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Fraunhofer Institute for Surface Engineering and Thin FilmsFraunhofer-GesellschaftBraunschweigGermany
  2. 2.Institute for Microtechnology (now: IMPT)Leibniz Universität HannoverHanoverGermany

Personalised recommendations