Advertisement

Modular Computer Aided Design Environment for Active Microsystems

  • U. Triltsch
  • U. Hansen
  • C. Boese
  • J. R. Ziebart
  • H.-J. Franke
  • T. Vietor
  • S. Büttgenbach
Chapter
Part of the Microtechnology and MEMS book series (MEMS)

Abstract

With the ambition to increase the yield and the ability of microsystems as well as to speed up development, a computer aided design environment for active microsystems has been developed. Multiple software modules have been combined to form a complex, object-oriented development framework that is able to support designers throughout the entire design process. Besides 3D-CAD-, development- and process simulation modules the tool comprises a workflow manager and the ability to analyze process parameters. Furthermore, it is connected to databases acting as a knowledge-, a product-, a process-, and a tool storage.

Keywords

Tolerance Analysis Lithographic Mask Proximity Distance Tolerance Synthesis Optical Proximity Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Büttgenbach S, Than O (1996) SUZANA: A 3D CAD tool for anisotropically etched silicon microstructures. In: Proceedings of the 1996 European conference on Design and Test, IEEE Computer Society, p 454Google Scholar
  2. 2.
    Büttgenbach S, Hansen U, Steffensen L (2001) Computational synthesis of lithographic mask layouts for silicon microcomponents. In: Proceedings of SPIE, vol 4407, p 126CrossRefGoogle Scholar
  3. 3.
    Ehrfeld W (2002) Handbuch Mikrotechnik. Hanser VerlagGoogle Scholar
  4. 4.
    Franke HJ, Löffler S, Deimel M (2004) Increasing the efficiency of design catalogues by using modern data processing technologies. DubrovnikGoogle Scholar
  5. 5.
    Germer C (2004) Interdisziplinäres Toleranzmanagement. Logos Verlag, DissertationGoogle Scholar
  6. 6.
    Germer C, Franke HJ, Hansen U, Büttgenbach S (2001) Der rechnerunterst ützte Entwurf in der Mikrotechnik. Konstruktion 12Google Scholar
  7. 7.
    Hansen U, Büttgenbach S (2004) T-CAD for the analysis and verification of processing sequences. Microsystem Technologies 10(3):193–198CrossRefGoogle Scholar
  8. 8.
    Hansen U, Güttler J, Seidemann V, Büttgenbach S (2001) An optimization software for the design of micro coils. Proc 12th Micromechanics Europe Workshop pp 241–244Google Scholar
  9. 9.
    Hansen U, Germer C, Büttgenbach S, Franke HJ (2003) Mixed system and component level T-CAD for micro fabrication. In: Proceedings of the Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, IEEE Computer Society, pp 4–9Google Scholar
  10. 10.
    Triltsch U, Büttgenbach S (2008) TCAD tool for innovative MEMS and MOEMS: an all-in-one solution. In: Proceedings of SPIE, vol 6882, p 68820GCrossRefGoogle Scholar
  11. 11.
    Triltsch U, Feldmann M, Boese C, Büttgenbach S (2008) Simulation tool for proximity effects in high aspect ratio UV-lithographic patterning. Sensors and Actuators A: Physical 142(1):429–433CrossRefGoogle Scholar
  12. 12.
    Vietor T, Franke HJ, Ziebart J, Büttgenbach S, Boese C (2010) IDeFiX – Interaktives Werkzeug zur Definition mehrdimensionaler Funktionsstrukturen. Konstruktion 4 / 2010:73–74Google Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  • U. Triltsch
  • U. Hansen
  • C. Boese
  • J. R. Ziebart
  • H.-J. Franke
    • 2
  • T. Vietor
    • 2
  • S. Büttgenbach
    • 1
  1. 1.Institute for MicrotechnologyTechnische Universität BraunschweigBrunswickGermany
  2. 2.Institute for Engineering DesignTechnische Universität BraunschweigBrunswickGermany

Personalised recommendations