Advertisement

Bistable Microvalve for Biomedical Usage

  • A. Balck
  • C. Kirsch
  • U. Schmid
  • H. Seidel
  • M. Leester-Schädel
  • S. Büttgenbach
Chapter
Part of the Microtechnology and MEMS book series (MEMS)

Abstract

One example of the SFB 516 transfer work is a bistable microvalve which is planned to be integrated in implantable high precision dose infusion pumps typically used for patients with chronic pain or spasticity. The drug pumps are designed to have a 35 year lifespan within the patients body and work without an external energy supply. To adjust the drug rate to the individual needs of the patient, it is of utmost importance to provide a variable drug output rate. To achieve this goal, an innovative low-energy microvalve has been developed. Development and manufacturing of the microvalve are based on research results of the SFB 516, in particular those applicable to the drive unit, the silicon bulk micromachining, and the optimization of friction and wear.

Keywords

Shape Memory Alloy Membrane Layer Valve Seat Mask Layer Shape Memory Alloy Actuator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Böhm S, Burger GJ, Korthorst MT, Roseboom F (2000) A micromachined silicon valve driven by a miniature bi-stable electro-magnetic actuator. Sensors and Actuators, A: Physical 80(1):7783CrossRefGoogle Scholar
  2. 2.
    Capanu M, Boyd IV JG, Hesketh PJ (2000) Design, fabrication, and testing of a bistable electromagnetically actuated microvalve. Journal of Microelectromechanical Systems 9(2):181189CrossRefGoogle Scholar
  3. 3.
    Goll C, Bacher W, Büstgens B, Maas D, Menz W, Schomburg WK (1996) Microvalves with bistable buckled polymer diaphragms. Journal of Micromechanics and Microengineering 6(1):7779CrossRefGoogle Scholar
  4. 4.
    Kordon R (31.07.2000) Bistabiles Magnetventil. BSH Bosch und Siemens Hausgeräte GmbH, Munich (DE), patent DE10037251A1Google Scholar
  5. 5.
    Offereins HL, Sandmaier H, Folkmer B, Steger U, Lang W (1991) Stress free assembly technique for a silicon based pressure sensor. pp 986989Google Scholar
  6. 6.
    Oh KW, Ahn CH (2006) A review of microvalves. Journal of Micromechanics and Microengineering 16(5):R13R39CrossRefGoogle Scholar
  7. 7.
    Qiu J, Lang JH, Slocum AH (2001) A centrally-clamped parallel-beam bistable mems mechanism. pp 353356Google Scholar
  8. 8.
    Quenzer HJ, Wagner B (10.02.1997) Bistable microactuator with coupled membranes. Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V., Munich (DE), patent US6168395B1Google Scholar
  9. 9.
    Seward KP (08.03.2001) Bistable microvalve and microcatheter system. The Regents of the University of California, Oakland, CA (US), patent US6565526B2Google Scholar
  10. 10.
    Wisskirchen M, Geser B (30.03.1994) Bistable electromagnet, in particular magnetic valve. Schrott, Harald, patent WO9423435Google Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  • A. Balck
  • C. Kirsch
  • U. Schmid
  • H. Seidel
    • 2
  • M. Leester-Schädel
    • 1
  • S. Büttgenbach
    • 1
  1. 1.Institute for MicrotechnologyTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Chair of Micromechanics, Microfluidics/MicroactuatorsUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations