Advertisement

Development and Fabrication of Linear and Multi-Axis Microactuators

  • S. Hansen
  • H. H. Gatzen
Chapter
Part of the Microtechnology and MEMS book series (MEMS)

Abstract

To create an xy-micro- or nanopositioner, three types of micromotors were evaluated: a linear variable-reluctance (VR) microstep motor, a linear hybrid microstep motor and a linear synchronous motor. The most apropriate drive scheme found for an xy-positioner was the linear VR microstep motor. By combining four of these systems with magnetic levitation devices, an xy-positioner with frictionless motion could be created. In two alternative versions, a pole-based xy-microactuator with a resolution of 500 nm and a tooth-based xy-nanoactuator with a resolution of 100 nm were designed. Both versions use a microstepping drive mode.

Keywords

Permanent Magnet Seed Layer Step Motor Synchronous Motor Magnetic Levitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bedenbecker M, Ruffert C, Hahn M, Gatzen HH (2007) Linear synchronous micro motor with further miniaturized dimensions. In: Proc. of the ASME 2007, pp 16Google Scholar
  2. 2.
    Cvetkovic S, Ruffert C, Gatzen HH (2007) Assembly concept of a magnetic levitation system for a linear micro actuator. In: Proc. ASME 2007, Las Vegas, NV, USA 2007, DETC2007-35266Google Scholar
  3. 3.
    Deaconu D, Chirila A, Navrapescu V, Albu M, Ghita C, Popescu C (2008) Two hybrid stepper motor models. In: 9th WSEAS International Conference on Automation and Information (ICAI 08), pp 129134Google Scholar
  4. 4.
    Föhse M, Edler J, Stölting HD, Gatzen HH (2002) Investigations on the pole geometry optimization of a variable reluctance microactuator. In: 47. Internationales Wissenschaftliches Kolloqium 2002, Ilmenau, Germany, pp 215216Google Scholar
  5. 5.
    Föhse M, Edler J, Stölting HD, Gatzen HH (2003) A batch fabricated synchronous motor. In: Proc. Int. Mech. Eng. Congr. and Expo IMECE 2003, Washington D.C., USA, pp 18Google Scholar
  6. 6.
    Gatzen HH, Stölting HD, Büttgenbach S, Dimigen H (2000) A novel variable reluctance micromotor for linear actuation. In: Proc. Actuator 2000, Bremen, Germany,, pp 363366Google Scholar
  7. 7.
    Gatzen HH, Morsbach C, Karyazin A (2002) High precision machining of a longitudinal bearing for a linear microactuator. In: Proc. EUSPEN 3rd Int. Conf. 2002, Eindhoven, The Netherlands, pp 325328Google Scholar
  8. 8.
    Gatzen HH, Morsbach C, Kourouklis C (2003) Chemical-mechanical planarization of a SU-8/copper combination for mems. In: Proc. ASPE 18th Ann. Meet. 2003, Portland, OR, USA,, pp 575578Google Scholar
  9. 9.
    Gatzen HH, Stölting HD, Ponick B (2004) Alternatives for micromachined linear actuators. In: Proc. 9th Int. Conf. on New Actuators 2004, Bremen, Germany, pp 317320Google Scholar
  10. 10.
    Gatzen HH, Hahn M, Bedenbecker M, Ponick B, Gehrking R, Demmig S (2006) Advances in the development of a linear hybrid micro actuator. In: Proc. 10th Int. Conf. on New Actuators 2006, Bremen, Germany, pp 207210Google Scholar
  11. 11.
    Hahn M, Bedenbecker M, Brand U, Gatzen HH (2004) Evaluation of a linear hybrid micro step motor. In: Proc. 8th Int. Symposium on Magnetic Materials, Processes and Devices, 206th Meet. of The Electrochemical Society 2004, Honolulu, HI, USA, pp 493505Google Scholar
  12. 12.
    Hahn M, Bedenbecker M, Gatzen HH (2007) Evaluation of a linear hybrid microstep motor by means of magnetic flux measurements. IEEE Trans on Magn 43(6):25882590CrossRefGoogle Scholar
  13. 13.
    Hansen S, Norpoth J, Joss C, Rissing L, Gatzen HH (2010) Magnetooptical characterization of the stator of a variable reluctance (vr) micro step motor. In: Proc. Actuator 2010, Bremen, Germany, pp 706709Google Scholar
  14. 14.
    Probst M, Flückiger M, Pan S, Ergeneman O, Nagy Z, Nelson BJ (2007) Manufacturing of a hybrid acoustic transmitter using an advanced microassembly system. IEEE Transactions On Industrial Electronics 56(7):26572666CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute for Microtechnology (now: IMPT)Leibniz Universität HannoverHanoverGermany

Personalised recommendations