Advertisement

Modeling of Electrically Large Equipment with Distributed Dipoles Using Metaheuristic Methods

  • Joan Ramon Regué
  • Miquel Ribó
  • José Gomila
Chapter
  • 1.1k Downloads
Part of the Evolutionary Learning and Optimization book series (ALO, volume 4)

Introduction

Near-Field to Far-Field Transformation

The reference environment for measurement of radiated emissions is the open area test site (OATS). The far field of a radiating element is of great interest [1], [2] since it is independent of distance. However, in an OATS environment, it is hardly possible to separate interferences generated by the equipment under test (EUT) from external ones. Semi-anechoic chambers have to be used instead. For large radiating elements, the minimal distance [1], [3]-[5] needed to measure the far field is large, especially at low frequencies. Therefore, large costly semi-anechoic chambers which are only affordable to very few big laboratories are required.

Keywords

Genetic Algorithm Differential Evolution Ground Plane Anechoic Chamber Electromagnetic Compatibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IEEE Standard Test Procedures for Antennas, ANSI/IEEE Std 149-1979 (1979)Google Scholar
  2. 2.
    Evans, G.E.: Antenna Measurement Techniques. Artech House, Boston (1990)Google Scholar
  3. 3.
    Yaghjian, A.D.: An overview of near-field antenna measurements. IEEE Trans. Antennas Propagation 34(1), 30–45 (1986)CrossRefGoogle Scholar
  4. 4.
    IEEE Standard Definitions of Terms for Antennas, IEEE Std 145-1993. IEEE, Los Alamitos (1993) Google Scholar
  5. 5.
    Balanis, C.A.: Antenna Theory: Analysis and Design. John Wiley & Sons, New York (1997)Google Scholar
  6. 6.
    Johnson, R.C., Ecker, H.A., Hollis, J.S.: Determination of far-field antenna patterns from near-field measurements. Proc. IEEE 61(12), 1668–1694 (1973)CrossRefGoogle Scholar
  7. 7.
    Petre, P., Sarkar, T.K.: Planar near-field to far-field transformation using an equivalent magnetic current approach. IEEE Trans. Antennas Propagation 40(11), 1348–1356 (1992)CrossRefGoogle Scholar
  8. 8.
    Bucci, O.M., D’Elia, G., Migliore, M.D.: An effective near-field far-field transformation technique from truncated and inaccurate amplitude-only data. IEEE Trans. Antennas Propagation 47(9), 1377–1385 (1999)CrossRefGoogle Scholar
  9. 9.
    Sarkar, T.K., Taaghol, A.: Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM. IEEE Trans. Antennas Propagation 47(3), 566–573 (1999)CrossRefGoogle Scholar
  10. 10.
    Las-Heras, F., Sarkar, T.K.: Radial field retrieval in spherical scanning for current reconstruction and NF-FF transformation. IEEE Trans. Antennas Propagation 50(6), 866–874 (2002)CrossRefGoogle Scholar
  11. 11.
    Pérez, J.R., Basterrechea, J.: Antenna far-fields from planar acquisition using micro-genetic algorithms. Electronic Letters 39(13), 948–949 (2003)CrossRefGoogle Scholar
  12. 12.
    Slater, D.: Near-Field Antenna Measurements. Artech House, Boston (1991)Google Scholar
  13. 13.
    Bolomey, J.C.: Rapid near-field techniques for EMC applications. In: 10th Int. Zurich Symp. Technical Exhibition EMC, Zurich, Switzerland, March 9-11, pp. 55–60 (1993)Google Scholar
  14. 14.
    Bolomey, J.C.: Introduction to near-field techniques for emc applications: State of the art and prospective. In: 2001 IEEE EMC Int. Symp., Montréal, Canada, August 13-17, vol. 1, p. 356 (2001)Google Scholar
  15. 15.
    Bucci, O.M., D’Elia, G., Migliore, M.D., Pierri, R.: Phaseless near-field measurements. In: 2001 IEEE EMC Int. Symp., Montréal, Canada, August 13-17, vol. 1, pp. 389–394 (2001)Google Scholar
  16. 16.
    Sarkar, T.K., Las-Heras, F.: A direct optimization approach for source reconstruction NFFF using amplitude only data. In: 2001 IEEE EMC Int. Symp., Montréal, Canada, August 13-17, vol. 1, pp. 399–402 (2001)Google Scholar
  17. 17.
    Laroussi, R., Costache, G.I.: Novel technique for radiated far-field predictions from near-field measurements. In: 1992 Asia-Pacific Microwave Conf., Adelaide, Australia, August 11-13, vol. 2, pp. 791–794 (1992)Google Scholar
  18. 18.
    Laroussi, R., Costache, G.I.: Far-field predictions from near-field measurements using an exact integral equation solution. IEEE Trans. Electromagnetic Compatibility 36(3), 189–195 (1994)CrossRefGoogle Scholar
  19. 19.
    Vandenbosch, G., Van de Capelle, A.: Simulation of an EMC reference site in a near-field antenna range. In: 10th Int. Zurich Symp. Technical Exhibition EMC, Zurich, Switzerland, March 9-11, pp. 61–66 (1993)Google Scholar
  20. 20.
    Cerri, G., Leo, R.D., Mariani, V., Martiri, M.: Radiated emission estimation by measurement of magnetic near fields. In: 12th Int. Symp. Technical Exhibition EMC, Zurich, Switzerland, Febuary 18-20, pp. 447–452 (1997)Google Scholar
  21. 21.
    Fourestié, B., Altman, Z., Wiart, J., Bolomey, J.C., Brouaye, F.: A novel near-field measurement facility for random emissions. In: 2001 IEEE EMC Int. Symp., Montréal, Canada, August 13-17, vol. 1, pp. 378–382 (2001)Google Scholar
  22. 22.
    Fourestié, B., Altman, Z., Bolomey, J.C., Wiart, J., Brouaye, F.: Statistical modal analysis applied to near-field measurements of random emissions. IEEE Trans. Antennas Propagation 50(12), 1803–1812 (2002)CrossRefGoogle Scholar
  23. 23.
    Nadeau, B., Laurin, J.J.: Extrapolations using vectorial planar near-field measurements for EMC applications. In: 1998 IEEE Int. Symp. Electromagnetic Compatibility, Denver, Colorado, August 23-28, vol. 2, pp. 924–928 (1998)Google Scholar
  24. 24.
    Laurin, J.J.: Near-field characterization of PCBs for radiated emissions prediction. In: 1993 IEEE Int. Symp. Electromagnetic Compatibility, Dallas, TX, August 9-13, vol. 2, pp. 322–326 (1993)Google Scholar
  25. 25.
    Laurin, J.J., Ouardhiri, Z., Colinas, J.: Near-field imaging of radiated emission sources on printed-circuit boards. In: 2001 IEEE EMC Int. Symp., Montréal, Canada, August 13-17, vol. 1, pp. 368–373 (2001)Google Scholar
  26. 26.
    Jackson, J.D.: Classical electrodynamics, 3rd edn. John Wiley & Sons, New York (1999)zbMATHGoogle Scholar
  27. 27.
    Sreenivasiah, I., Chang, D.C., Ma, M.T.: Emission characteristics of electrically small radiating sources from tests inside a TEM cell. IEEE Trans. Electromagnetic Compatibility 23(3), 113–121 (1981)CrossRefGoogle Scholar
  28. 28.
    Koepke, G.H., Ma, M.T.: A new method for determining the emission characteristics of an unknown interference source. In: 5th Int. Zurich Symp. Technical Exhibition EMC, Zurich, Switzerland, March 8-10, pp. 35–40 (1983)Google Scholar
  29. 29.
    Wilson, P., Hansen, D., Koenigstein, D.: Simulating open area test site emission measurements based on data obtained in a novel broadband TEM cell. In: IEEE National Symp. Electromagnetic Compatibility, Denver, Colorado, May 23-25, pp. 171–177 (1989)Google Scholar
  30. 30.
    Kanda, M., Hill, D.A.: A three-loop method for determining the radiation characteristics of an electrically small source. IEEE Trans. Electromagnetic Compatibility 34(1), 1–3 (1992)CrossRefGoogle Scholar
  31. 31.
    Wilson, P.: On simulating oats near-field emission measurements via GTEM cell measurements. In: IEEE Int. Symp. Electromagnetic Compatibility, Dallas, TX, August 9-13, pp. 53–57 (1993)Google Scholar
  32. 32.
    Wilson, P.: On correlating TEM cell and OATS emission measurements. IEEE Trans. Electromagnetic Compatibility 37(1), 1–16 (1995)CrossRefGoogle Scholar
  33. 33.
    Kanda, M.: An electromagnetic near-field sensor for simultaneous electric and magnetic-field measurements. IEEE Trans. Electromagnetic Compatibility 26(3), 102–110 (1984)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Wehr, M., Mönich, G.: Detection of radiation leaks by spherically scanned field data. In: 10th Int. Zurich Symp. Technical Exhibition EMC, Zurich, Switzerland, March 9-11, pp. 337–342 (1993)Google Scholar
  35. 35.
    Wehr, M., Podubrin, A., Mönich, G.: Automatized search for models by evolution strategy to characterize radiators. In: 11th Int. Zurich Symp. Technical Exhibition EMC, Zurich, Switzerland, March 7-9, pp. 27–34 (1995)Google Scholar
  36. 36.
    Pérez, J.R., Basterechea, J.: Prediction of DUT radiation from near-field measurements in a screened room using GAs. In: 2001 IEEE Int. Symp. Electromagnetic Compatibility, Montréal, Canada, August 13-17, vol. 1, pp. 383–388 (2001)Google Scholar
  37. 37.
    Manuel, J., Bueno, G.: An EMI source finding method based on neural network. In: 15th Int. Zurich Symp. Technical Exhibition EMC, Zurich, Switzerland, Febuary 18-20, pp. 295–298 (2003)Google Scholar
  38. 38.
    Regué, J.R., Ribó, M., Garrell, J.M., Martín, A.: Genetic algorithm based method for source identification and far-field radiated emissions prediction from near-field measurements for PCB characterization. IEEE Trans. Electromagnetic Compatibility 43(4), 520–530 (2001)CrossRefGoogle Scholar
  39. 39.
    Regué, J.R.: Predicció d’emissions radiades per equips electrònics mitjançant el seu modelatge amb dipols distribuïts, PhD dissertation, E. T. S. E. E. I. La Salle, Universitat Ramon Llull, Barcelona, Spain (2005)Google Scholar
  40. 40.
    Regué, J.R., Ribó, M., Gomila, J., Pérez, A., Martín, A., Garrell, J.M.: Modeling of radiating equipment by distributed dipoles using metaheuristic methods. In: 2005 IEEE Int. Symp. Electromagnetic Compatibility, Chicago, IL, August 8-12, pp. 596–601 (2005)Google Scholar
  41. 41.
    Regué, J.R., Ribó, M., Garrell, J.M.: Radiated emissions conversion from anechoic environment to OATS using a hybrid genetic algorithm-gradient method. In: 2001 IEEE Int. Symp. Electromagnetic Compatibility, Montréal, Canada, August 13-17, vol. 1, pp. 325–329 (2001)Google Scholar
  42. 42.
    Balanis, C.A.: Advanced Engineering Electromagnetics. John Wiley & Sons, New York (1989)Google Scholar
  43. 43.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)Google Scholar
  44. 44.
    Rahmat-Samii, Y., Michielssen, E.: Electromagnetic Optimization by Genetic Algorithms. John Wiley & Sons, New York (1999)zbMATHGoogle Scholar
  45. 45.
    Glover, F., Kochenberger, G.A. (eds.): Handbook of Metaheuristics. Kluwer Academic Publishers, Boston (2003)zbMATHGoogle Scholar
  46. 46.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  47. 47.
    Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. J. Association Computing Machinery 8(2), 212–229 (1961)zbMATHGoogle Scholar
  48. 48.
    Johnson, M.G.: Nonlinear optimization using the algorithm of Hooke and Jeeves, Software in the Netlib Repository (Febuary 1994), http://www.netlib.org/opt/hooke.c (last accessed Febuary 3, 2010)
  49. 49.
    Corne, D., Dorigo, M., Glover, F. (eds.): New Ideas in optimization. McGraw-Hill Education, London (1999)Google Scholar
  50. 50.
    Storn, R., Price, K.V.: Differential Evolution - A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical Report TR-95-012, International Computer Science Insitute (March 1995)Google Scholar
  51. 51.
    Regué, J.R., Ribó, M., Garrell, J.M., Sorroche, S., Ayuso, J.: A genetic algorithm based method for predicting far-field radiated emissions from near-field measurements. In: 2000 IEEE EMC Int. Symp., Washington, DC, August 21-25, vol. 1, pp. 147–151 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Joan Ramon Regué
    • 1
  • Miquel Ribó
    • 1
  • José Gomila
    • 1
  1. 1.Grup de Recerca en Electromagnetisme i Comunicacions (GRECO)Ls Salle, Universitat Ramon Llull (URL)BarcelonaSpain

Personalised recommendations