Advertisement

A Retrospective of Differential Evolution in Electromagnetics

  • Anyong Qing
Chapter
  • 1.2k Downloads
Part of the Evolutionary Learning and Optimization book series (ALO, volume 4)

Introduction

Coverage

The electromagnetic spectrum extends from below frequencies used for modern radio to gamma radiation at the short-wavelength end, covering wavelengths from thousands of kilometers down to a fraction of the size of an atom. The long wavelength limit is the size of the universe itself, while it is thought that the short wavelength limit is in the vicinity of the Planck length, although in principle the spectrum is infinite and continuous. Radio waves, microwaves, terahertz waves, infrared light, visible light, ultraviolet light, X-rays, and gamma rays are all kinds of electromagnetic waves. However, in this chapter, attention is focused on radio waves and microwaves since other electromagnetic waves are entertained by more specific subjects, for example, optics for light waves.

In addition, electromagnetics is closely related with many other disciplines. Many inter-disciplinary fields have been increasingly created through mutual invasion between such disciplines and electromagnetics. However, in this chapter, an application of differential evolution will not be classified into the electromagnetics category unless it is applied to solve an electromagnetic problem.

This chapter is based purely on the literature survey mentioned in Chapter 1 of this book. Please note that some of the collected publications are not cited here due to concern of language translation accuracy for non-English publications and/or classification accuracy for those publications whose full text is unavailable to this author at this moment.

Similarly, to avoid any potential misleading to readers, partial result for year 2009 is not presented here.

Keywords

Differential Evolution Antenna Array Differential Evolution Algorithm Microstrip Antenna Frequency Selective Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Michalski, K.A.: Electromagnetic imaging of circular-cylindrical conductors and tunnels using a differential evolution algorithm. Microwave Optical Technology Letters 27(5), 330–334 (2000)CrossRefGoogle Scholar
  2. 2.
    Mydur, R.: Application of Evolutionary Algorithms & Neural Networks to Electromagnetic Inverse Problems, M. Sc. Thesis, Texas A&M University (2000)Google Scholar
  3. 3.
    Michalski, K.A., Jabs, H.S.: One-dimensional analysis of microwave batch sterilization of water with continuous impedance matching. Microwave Optical Technology Letters 26(2), 83–89 (2000)CrossRefGoogle Scholar
  4. 4.
    Vancorenland, P., De Ranter, C., Steyaert, M., Gielen, G.: Optimal RF design using smart evolutionary algorithms. In: 37th Design Automation Conf., Los Angeles, CA, June 5-9, pp. 7–10 (2000)Google Scholar
  5. 5.
    Qing, A.: Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic algorithm. IEEE Trans. Geoscience Remote Sensing 39(3), 665–676 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Qing, A., Gan, Y.B.: Electromagnetic inverse problems. In: Chang, K. (ed.) Encyclopedia of RF and Microwave Engineering, vol. 2, pp. 1200–1216. John Wiley, New York (2005)Google Scholar
  7. 7.
    Baganas, K., Kehagias, A., Charalambopoulos, A.: Inhomogeneous dielectric media: wave propagation and dielectric permittivity reconstruction. J. Electromagnetic Waves Applications 15(10), 1373–1400 (2001)CrossRefGoogle Scholar
  8. 8.
    Michalski, K.A.: Electromagnetic imaging of homogeneous-dielectric elliptic cylinders using a differential evolution algorithm combined with a single boundary integral equation method. In: URSI Int. Symp. Electromagnetic Theory, Victoria, Canada, May 13-17 (2001)Google Scholar
  9. 9.
    Michalski, K.A.: Electromagnetic imaging of elliptical-cylindrical conductors and tunnels using a differential evolution algorithm. Microwave Optical Technology Letters 28(3), 164–169 (2001)CrossRefGoogle Scholar
  10. 10.
    Baganas, K.: Inhomogeneous dielectric media: Wave propagation and dielectric permittivity reconstruction in the case of a rectangular waveguide. J. Electromagnetic Waves Applications 16(10), 1371–1392 (2002)CrossRefGoogle Scholar
  11. 11.
    Goswami, J.C., Mydur, R., Wu, P.: Application of differential evolution algorithm to model based well log-data inversion. In: 2002 IEEE AP-S Int. Symp., June 16-21, vol. 1, pp. 318–321 (2002)Google Scholar
  12. 12.
    Li, Y., Rao, L., He, R., Xu, G., Wu, Q., Ge, M., Yan, W.: Image reconstruction of EIT using differential evolution algorithm. In: 25th IEEE Annual Int. Conf. Engineering Medicine Biology Society, September 17-21, vol. 2, pp. 1011–1014 (2003)Google Scholar
  13. 13.
    Qing, A.: Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy. IEEE Trans. Antennas Propagation 51(6), 1251–1262 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Qing, A.: Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES). In: 2003 IEEE AP-S Int. Symp., Columbus, Ohio, June 22-27, vol. 1, pp. 519–522 (2003)Google Scholar
  15. 15.
    Baganas, K.: Inhomogeneous magnetic media: wave propagation and magnetic permeability reconstruction. PIER 46, 313–333 (2004)CrossRefGoogle Scholar
  16. 16.
    Caorsi, S., Donelli, M., Massa, A., Pastorino, M., Randazzo, A.: Detection of buried objects by an electromagnetic method based on a differential evolution approach. In: IEEE Instrumentation Measurement Technology Conf., Como, Italy, May 18-20, vol. 2, pp. 1107–1111 (2004)Google Scholar
  17. 17.
    Chen, X., Grzegorczyk, T.M., Wu, B.I., Pacheco Jr., J., Kong, J.A.: Robust method to retrieve the constitutive effective parameters of metamaterials. Physical Review E 70(1-2), art. no. 016608, 016608-1-016608-7 (2004)Google Scholar
  18. 18.
    Chen, X., O’Neill, K., Barrowes, B.E., Grzegorczyk, T.M., Kong, J.A.: Application of a spheroidal-mode approach and a differential evolution algorithm for inversion of magneto-quasistatic data in UXO discrimination. Inverse Problems 20(6), s27–s40 (2004)CrossRefGoogle Scholar
  19. 19.
    Goswami, J.C., Mydur, R., Wu, P., Heliot, D.: A robust technique for well log data inversion. IEEE Trans. Antennas Propagation 52(3), 717–724 (2004)CrossRefGoogle Scholar
  20. 20.
    Li, Y., Li, H., He, R., Rao, L., Wu, Q., Xu, G., Shen, X., Yan, W.: EEG source localization using differential evolution method. In: IEEE Annual Int. Conf. Engineering Medicine Biology, San Francisco, CA, September 1-5, vol. 26 III, pp. 1903–1906 (2004)Google Scholar
  21. 21.
    Li, Y., Rao, L., He, R., Xu, G., Guo, X., Yan, W., Wang, L., Yang, S.: Three EIT approaches for static imaging of head. In: Annual Int. Conf. IEEE Engineering Medicine Biology Society, San Francisco, CA, September 1-5, vol. 1, pp. 578–581 (2004)Google Scholar
  22. 22.
    Massa, A., Pastorino, M., Randazzo, A.: Reconstruction of two-dimensional buried objects by a differential evolution method. Inverse Problems 20(6), S135–S150 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Qing, A.: Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES). IEEE Trans. Antennas Propagation 52(5), 1223–1229 (2004)CrossRefGoogle Scholar
  24. 24.
    Pastorino, M.: Recent inversion procedures for microwave imaging in biomedical, subsurface detection and nondestructive evaluation applications, Measurement. J. International Measurement Confederation 36(3-4), 257–269 (2004)Google Scholar
  25. 25.
    Strifors, H.C., Gaunaurd, G.C., Sullivan, A.: Simultaneous classification of underground targets and determination of burial depth and soil moisture content. SPIE, vol. 5426, pp. 256–263 (2004)Google Scholar
  26. 26.
    Chen, X.: Inverse Problems in Electromagnetics, Ph. D. Thesis, Massachusetts Institute of Technology (2005)Google Scholar
  27. 27.
    Chen, X., Wu, B.I., Kong, J.A., Grzegorczyk, T.M.: Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Physical Review E 71, 46610 (2005)CrossRefGoogle Scholar
  28. 28.
    Li, Y., Rao, L., He, R., Xu, G., Wu, Q., Yan, W., Dong, G., Yang, Q.: A novel combination method of electrical impedance tomography inverse problem for brain imaging. IEEE Trans. Magnetics 41(5), 1848–1851 (2005)CrossRefGoogle Scholar
  29. 29.
    Li, Y., Xu, G.Z., Rao, L.Y., He, R.J., Yan, W.L.: Application of DE algorithm for brain imaging using EIT. Chinese J. Biomedical Engineering 24(6), 672–675, 695 (2005)Google Scholar
  30. 30.
    Shubitidze, F., O’Neill, K., Shamatava, I., Sun, K., Paulsen, K.: Analyzing multi-axis data versus scalar data for UXO discrimination. SPIE, vol. 5794, pp. 336–345 (2005)Google Scholar
  31. 31.
    Shubitidze, F., O’Neill, K., Shamatava, I., Sun, K., Paulsen, K.: Combined differential evolution and surface magnetic charge model algorithm for discrimination of UXO from non-UXO items: simple and general inversions. SPIE, vol. 5794, pp. 346–357 (2005)Google Scholar
  32. 32.
    Strifors, H.C., Andersson, T., Axelsson, D., Gaunaurd, G.C.: A method for classifying underground targets and simultaneously estimating their burial conditions. SPIE, vol. 5807, pp. 112–121 (2005)Google Scholar
  33. 33.
    Bachorec, T., Dedkova, J.: Image reconstruction based on deterministic and heuristic approach. Radio Engineering 15(3), 20–25 (2006)Google Scholar
  34. 34.
    Chen, X., Grzegorczyk, T.M., Kong, J.A.: Optimization approach to the retrieval of the constitutive parameters of slab of genral bianisotropic medium. PIER 60, 1–18 (2006)CrossRefGoogle Scholar
  35. 35.
    Qing, A.: Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems. IEEE Trans. Geoscience Remote Sensing 44(1), 116–125 (2006)CrossRefGoogle Scholar
  36. 36.
    Strifors, H.C., Abrahamson, S., Andersson, T., Gaunaurd, G.C.: Comparison of optimization-algorithm based feature extraction from time data or time-frequency data for target recognition purposes. SPIE, vol. 6234, art. no. 62340Z (2006)Google Scholar
  37. 37.
    Agarwal, K., Chen, X.: Application of differential evolution in 2-dimensional electromagnetic inverse problems. In: 2007 IEEE Congress Evolutionary Computation, Singapore, September 25-28, pp. 4305–4312 (2007)Google Scholar
  38. 38.
    Liao, C., Wei, T., Chen, W.: Integer coded differential evolution strategy and application to microwave imaging. J. Southwest Jiaotong University 42(6), 647–652 (2007)Google Scholar
  39. 39.
    Lubkowski, G., Schuhmann, R., Weiland, T.: Extraction of effective metamaterial parameters by parameter fitting of dispersive models. Microwave Optical Technology Letters 49(2), 285–288 (2007)CrossRefGoogle Scholar
  40. 40.
    Qing, A.: A parametric study on differential evolution based on benchmark electromagnetic inverse scattering problem. In: 2007 IEEE Congress Evolutionary Computation, Singapore, September 25-28, pp. 1904–1909 (2007)Google Scholar
  41. 41.
    Pastorino, M.: Stochastic optimization methods applied to microwave imaging: a review. IEEE Trans. Antennas Propagation 55(3), 538–548 (2007)CrossRefGoogle Scholar
  42. 42.
    Shubitidze, F., Barrowes, B.E., O’Neill, K.: NSMC for UXO discrimination in cases with overlapping signatures. SPIE, vol. 6553, art. no. 65530F (2007)Google Scholar
  43. 43.
    Shubitidze, F., O’Neill, K., Barrowes, B.E., Shamatava, I., Fernandez, J.P., Sun, K., Paulsen, K.K.: Application of the normalized surface magnetic charge model to UXO discrimination in cases with overlapping signals. J. Applied Geophysics 61(3-4), 292–303 (2007)CrossRefGoogle Scholar
  44. 44.
    Xing, G., Xue, J.: A hybrid method for electromagnetic propagated resistivity logging data inversion. IEEE Trans. Geoscience Remote Sensing 45(3), 649–655 (2007)CrossRefGoogle Scholar
  45. 45.
    Bréad, A., Perrusson, G., Lesselier, D.: Low-frequency electromagnetic characterization of buried obstacles by differential evolution with strategy of communication between groups and multi-resolution. J. Physics-Conf. Series 135, art. no. 012024 (2008)Google Scholar
  46. 46.
    Bréard, A., Perrusson, G., Lesselier, D.: Hybrid differential evolution and retrieval of buried spheres in subsoil. IEEE Geoscience Remote Sensing Letters 5(4), 788–792 (2008)CrossRefGoogle Scholar
  47. 47.
    Gaunaurd, G.C., Strifors, H.C., Sullivan, A.: Time-domain modeling of electromagnetic pulses returned from targets in dispersive and dissipative media. Sensing Imaging 9(1-2), 9–25 (2008)CrossRefGoogle Scholar
  48. 48.
    Gollas, F., Tetzlaff, R.: Analysis of EEG-signals in epilepsy: Spatio-temporal models. In: IEEE Int. Workshop Cellular Neural Networks Applications, Santiago de Compostela, Spain, July 14-16, pp. 96–101 (2008)Google Scholar
  49. 49.
    Rekanos, I.T.: Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization. IEEE Trans. Geoscience Remote Sensing 46(7), 1967–1974 (2008)CrossRefGoogle Scholar
  50. 50.
    Semnani, A., Kamyab, M.: Comparison of differential evolution and particle swarm optimization in one-dimensional reconstruction problems. In: 2008 Asia-Pacific Microwave Conf., Macau, China, December 16-20 (2008)Google Scholar
  51. 51.
    Balanis, C.A.: Antenna Theory: Analysis and Design, 3rd edn. John Wiley, New York (2005)Google Scholar
  52. 52.
    Caorsi, S., Massa, A., Pastorino, M., Randazzo, A.: Synthesis of sum and difference patterns for monopulse antennas by an hybrid real/integer-coded differential evolution method, Technical Report DIT-03-043, Department of Information and Communication Technology, University of Trento (July 2003)Google Scholar
  53. 53.
    Kurup, D.G.: Active and Passive Unequally Spaced Reflect-Arrays and Elements of RF Integration Techniques, Ph. D. Thesis, Acta Universitatis Upsaliensis (2003)Google Scholar
  54. 54.
    Kurup, D.G., Himdi, M., Rydberg, A.: Synthesis of uniform amplitude, unequally spaced antenna arrays using the differential evolution algorithm. IEEE Trans. Antennas Propagation 51(9), 2210–2217 (2003)CrossRefGoogle Scholar
  55. 55.
    Yang, S.W., Gan, Y.B., Qing, A.: Antenna array pattern nulling using a differential evolution algorithm. Int. J. RF Microwave Computer-aided Engineering 14(1), 57–63 (2003)CrossRefGoogle Scholar
  56. 56.
    Yang, S.W., Gan, Y.B., Tan, P.K.: A new technique for power-pattern synthesis in time-modulated linear arrays. IEEE Antennas Wireless Propagation Letters 2(1), 285–287 (2003)CrossRefGoogle Scholar
  57. 57.
    Yang, S., Qing, A., Gan, Y.B.: Synthesis of low sidelobe antennas arrays using the differential evolution algorithm. In: 2003 IEEE AP-S Int. Symp., Columbus, Ohio, June 22-27, vol. 1, pp. 780–783 (2003)Google Scholar
  58. 58.
    Fan, Y., Jin, R.H., Geng, J.P., Liu, B.: Hybrid optimized algorithm based on differential evolution and genetic algorithm and its applications in pattern synthesis of antenna arrays. Acta Electronica Sinica 32(12), 1997–2000 (2004)Google Scholar
  59. 59.
    Yang, S.W., Gan, Y.B., Qing, A.: Antenna array pattern nulling using a differential evolution algorithm. Int. J. RF Microwave Computer-aided Engineering 14(1), 57–63 (2004)CrossRefGoogle Scholar
  60. 60.
    Caorsi, S., Massa, A., Pastorino, M., Randazzo, A.: Optimization of the difference patterns for monopulse antennas by a hybrid real/integer-coded differential evolution method. IEEE Trans. Antennas Propagation 53(1), 372–376 (2005)CrossRefGoogle Scholar
  61. 61.
    Massa, A., Pastorino, M., Randazzo, A.: Optimization of the directivity of a monopulse antenna with a subarray weighting by a hybrid differential evolution method. IEEE Antennas Wireless Propagation Letters 5(1), 155–158 (2006)CrossRefGoogle Scholar
  62. 62.
    Rocha-Alicano, C., Covarrubias-Rosales, D., Brizuela-Rodríguez, C.: Performance evaluation of two array factor synthesis techniques for steerable linear arrays. In: IASTED Conf. Antennas, Radar, and Wave Propagation, Banff, Alberta, Canada, July 3-5, pp. 103–108 (2006)Google Scholar
  63. 63.
    Chen, Y.K., Yang, S.W., Nie, Z.P.: Synthesis of uniform amplitude thinned linear phased arrays using the differential evolution algorithm. Electromagnetics 27(5), 287–297 (2007)CrossRefGoogle Scholar
  64. 64.
    Rocha-Alicano, C., Covarrubias-Rosales, D., Brizuela-Rodriguez, C., Panduro Mendoza, M.: Differential evolution algorithm applied to sidelobe level reduction on a planar array, AEÜ. Int. J. Electronics Communications 61(5), 286–290 (2007)CrossRefGoogle Scholar
  65. 65.
    Chen, Y., Yang, S., Nie, Z.: The application of a modified differential evolution strategy to some array pattern synthesis problems. IEEE Trans. Antennas Propagation 56(7), 1919–1927 (2008)CrossRefGoogle Scholar
  66. 66.
    Kurup, D.G., Himdi, M., Rydberg, A.: Design of an unequally spaced reflectarray. IEEE Antennas Wireless Propagation Letters 2(1), 33–35 (2003)CrossRefGoogle Scholar
  67. 67.
    Yang, S., Nie, Z., Yang, F.: Mutual coupling compensation in small antenna arrays by the differential evolution algorithm. In: 2005 Asia-Pacific Microwave Conf., Suzhou, China, December 4-7, vol. 5 (2005a)Google Scholar
  68. 68.
    Yang, S.W., Nie, Z.P., Wu, Y.J.: A practical array pattern synthesis approach including mutual coupling effects. Electromagnetics 27(1), 53–63 (2007)CrossRefGoogle Scholar
  69. 69.
    Steyskal, H., Herd, J.S.: Mutual coupling compensation in small array antennas. IEEE Trans. Antennas Propagation 38(12), 1971–1975 (1990)CrossRefGoogle Scholar
  70. 70.
    Ouyang, J., Yang, F., Yang, S.W., Nie, Z.P.: Exact simulation method VSWIE+MLFMA for analysis radiation pattern of proble-feed conformal microstrip antennas and the application of synthesis radiation pattern of conformal array mounted on finite-length PEC circular cylinder with DES. J. Electromagnetic Waves Applications 21(14), 1995–2008 (2007)CrossRefGoogle Scholar
  71. 71.
    Li, J.Y.: Optimizing design of antenna using differential evolution. In: 2007 Asia-Pacific Microwave Conf., Bangkok, Thailand, December 11-14, pp. 45–58 (2007)Google Scholar
  72. 72.
    Hansen, R.C.: Phased Array Antennas. John Wiley, New York (2001)Google Scholar
  73. 73.
    Visser, H.: Array and Phased Array Antenna Basics. John Wiley, New York (2005)CrossRefGoogle Scholar
  74. 74.
    Volakis, J. (ed.): Antenna Engineering Handbook, 4th edn., ch. 20. McGraw-Hill, New York (2007)Google Scholar
  75. 75.
    Shi, B.Y.: Research on Methods of Adaptive Pattern Synthesis and Its Application in Active Electronic Scan Array, Master Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing (2006)Google Scholar
  76. 76.
    Kummer, W.H., Villeneuve, A.T., Fong, T.S., Terrio, F.G.: Ultra-low sidelobes from time-modulated arrays. IEEE Trans. Antennas Propagation 11, 633–639 (1963)CrossRefGoogle Scholar
  77. 77.
    Hansen, R.C. (ed.): Microwave Scanning Antennas. Academic, New York (1966)Google Scholar
  78. 78.
    Yang, S., Gan, Y.B., Qing, A.: Sideband suppression in time modulated linear arrays by the differential evolution algorithm. IEEE Antennas Wireless Propagation Letters 1(9), 173–175 (2002)CrossRefGoogle Scholar
  79. 79.
    Chen, Y., Yang, S., Li, G., Nie, Z.: Adaptive nulling in time-modulated antenna arrays. In: 2008 8th Int. Symp. Antennas Propagation EM Theory, Kunming, China, November 2-5, pp. 713–716 (2008)Google Scholar
  80. 80.
    Yang, S., Chen, Y., Nie, Z.: Multiple patterns from time-modulated linear antenna arrays. Electromagnetics 28(8), 562–571 (2008)CrossRefGoogle Scholar
  81. 81.
    Yang, S., Gan, Y.B., Qing, A.: Low sidelobe phased array antennas with time modulation. In: 2003 IEEE AP-S Int. Symp., Columbus, Ohio, June 22-27, vol. 4, pp. 200–203 (2003a)Google Scholar
  82. 82.
    Yang, S., Nie, Z.: Time modulated planar arrays with square lattices and circular boundaries. Int. J. Numerical Modelling-Electronic Networks Devices Fields 18(6), 469–480 (2005)zbMATHCrossRefGoogle Scholar
  83. 83.
    Yang, S., Nie, Z., Yang, F.: Synthesis of low sidelobe planar antenna arrays with time modulation. In: Asia-Pacific Microwave Conf., Suzhou, China, art. no. 1606682, December 4-7 (2005)Google Scholar
  84. 84.
    Chen, Y., Yang, S., Nie, Z.: Synthesis of optimal sum and difference patterns from time modulated hexagonal planar arrays. Int. J. Infrared Millimeter Waves 29(10), 933–945 (2008)CrossRefGoogle Scholar
  85. 85.
    Chen, Y., Yang, S., Nie, Z.: Synthesis of satellite footprint patterns from time modulated planar arrays with very low dynamic range ratios. Int. J. Numerical Modeling 21(6), 493–506 (2008)zbMATHCrossRefGoogle Scholar
  86. 86.
    Yang, S., Nie, Z.: Mutual coupling compensation in time modulated linear antenna arrays. IEEE Trans. Antennas Propagation 53(12), 4182–4185 (2005)CrossRefGoogle Scholar
  87. 87.
    Yang, S., Nie, Z.P.: Millimeter-wave sidelobe time modulated linear arrays with uniform amplitude excitations. Int. J. Infrared Millimeter Waves 28(7), 531–540 (2007)CrossRefGoogle Scholar
  88. 88.
    Lewis, B.L., Evins, J.B.: A new technique for reducing radar response to signals entering antenna sidelobes. IEEE Trans. Antennas Propagation 31(6), 993–996 (1983)CrossRefGoogle Scholar
  89. 89.
    Yang, S.W., Gan, Y.B., Qing, A.: Moving phase center antenna arrays with optimized static excitations. Microwave Optical Technology Letters 38(1), 83–85 (2003)CrossRefGoogle Scholar
  90. 90.
    Vancorenland, P., Van der Plas, G., Steyaert, M., Gielen, G., Sansen, W.: A layout-aware synthesis methodology for RF circuits. In: IEEE/ACM Int. Conf. Computer Aided Design, November 4-8, pp. 358–362 (2001)Google Scholar
  91. 91.
    Ramos, J., Francken, K., Gielen, G., Steyaer, M.: Knowledge- and optimization-based design of RF power amplifiers. In: IEEE Int. Symp. Circuits Systems, Vancouver, Canada, May 23-26, vol. 1, pp. I629–I632 (2004)Google Scholar
  92. 92.
    Ramos, J.: CMOS Operational and RF Power Amplifiers for Mobile Communications, Ph. D. Thesis, Katholieke Universiteit Leuven (March 2005)Google Scholar
  93. 93.
    Yang, S., Qing, A.: Design of high-power millimeter-wave TM01-TE11 mode converters by the differential evolution algorithm. IEEE Trans. Plasma Sci. 33(4), 1372–1376 (2005)CrossRefGoogle Scholar
  94. 94.
    Zhang, M.F.: Antenna Optimization and Design Based on Differential Evolution Strategy, Master Thesis, Southwest Jiaotong University, Chengdu, China (2008)Google Scholar
  95. 95.
    Yildiz, C., Akdagli, A., Turkmen, M.: Simple and accurate synthesis formulas obtained by using a differential evolution algorithm for coplanar strip lines. Microwave Optical Technology Letters 48(6), 1133–1137 (2006)CrossRefGoogle Scholar
  96. 96.
    Guney, K., Yildiz, C., Kaya, S., Turkmen, M.: New and accurate synthesis formulas for multilayer homogeneous coupling structure. Microwave Optical Technology Letters 49(10), 2486–2489 (2007)CrossRefGoogle Scholar
  97. 97.
    Guney, K., Yildiz, C., Kaya, S., Turkmen, M.: Synthesis formulas for multilayer homogeneous coupling structure with ground shielding. J. Electromagnetic Waves Applications 21(14), 2073–2084 (2007)CrossRefGoogle Scholar
  98. 98.
    Akdagli, A., Turkmen, M., Yildiz, C.: Accurate and simple synthesis formulas for coplanar waveguides. Int. J. RF Microwave Computer-aided Engineering 18(2), 112–117 (2008)CrossRefGoogle Scholar
  99. 99.
    Guney, K., Yildiz, C., Kaya, S., Turkmen, M.: Synthesis formulas for microcoplanar striplines. Microwave Optical Technology Letters 50(11), 2884–2888 (2008)CrossRefGoogle Scholar
  100. 100.
    Medina, M.A.Y., Schreurs, D., Nauwelaers, B.: Four-port deembedding technique for FET devices mounted in hybrid test fixture. In: 1st European Microwave Integrated Circuits Conf., Manchester, UK, September 10-13, pp. 464–467 (2006)Google Scholar
  101. 101.
    Akdagli, A., Yuksel, M.E.: Application of differential evolution algorithm to the modeling of laser diode nonlinearity in a radio-overfiber network. Microwave Optical Technology Letters 48(6), 1130–1133 (2006)CrossRefGoogle Scholar
  102. 102.
    Zhong, M., Yang, S., Nie, Z.: Optimization of a luneberg lens antenna using the differential evolution algorithm. In: 2008 IEEE AP-S Int. Symp., San Diego, CA, July 5-11, pp. 1–4 (2008)Google Scholar
  103. 103.
    Guney, K., Karaboga, D.: New narrow aperture dimension expressions obtained by using a differential evolution algorithm for optimum gain pyramidal horns. J. Electromagnetic Waves Applications 18(3), 321–339 (2004)CrossRefGoogle Scholar
  104. 104.
    Akdagli, A.: A closed-form expression for the resonant frequency of rectangular microstrip antennas. Microwave Optical Technology Letters 49(8), 1848–1852 (2007)CrossRefGoogle Scholar
  105. 105.
    Akdagli, A.: CAD formulas for patch dimensions of rectangular micorstrip antennas with various substrate thickness. Microwave Optical Technology Letters 49(9), 2197–2201 (2007)CrossRefGoogle Scholar
  106. 106.
    Akdagli, A.: A novel expression for effective radius in calculating the resonant frequency of circular microstrip patch antennas. Microwave Optical Technology Letters 49(10), 2395–2398 (2007)CrossRefGoogle Scholar
  107. 107.
    Guney, K., Sarikaya, N.: Resonant frequency calculation for circular microstrip antennas with a dielectric cover using adaptive network-based fuzzy inference system optimized by various algorithms. Progress Electromagnetics Research 72, 279–306 (2007)CrossRefGoogle Scholar
  108. 108.
    Akdagli, A., Ozdemir, C., Yamacli, S., Arcasoy, C.C.: Improved formulas for the resonant frequencies of dual frequency arrow shaped compact microstrip antenna. Microwave Optical Technology Letters 50(1), 62–65 (2008)CrossRefGoogle Scholar
  109. 109.
    Yaccarino, R.G., Rahmat-Samii, Y.: Progress in phaseless near-field antenna measurement research at the University of California, Los Angeles. In: 2001 IEEE AP-S Int. Symp., Boston, MA, July 8-13, vol. 4, pp. 416–419 (2001)Google Scholar
  110. 110.
    Razavi, S.F., Rahmat-Samii, Y.: Phaseless planar near field measurements for scanned beams: Difficulties, a hybrid solution and measured results. In: IEEE AP-S Int. Symp., Albuquerque, NM, July 9-14, pp. 429–432 (2006)Google Scholar
  111. 111.
    Qing, A.: Design of broadband planar microwave absorber. In: Int. Conf. Materials Advanced Technologies, Singapore, July 1-6, pp. 212–215 (2007)Google Scholar
  112. 112.
    Wu, T.K. (ed.): Frequency Selective Surfaces and Gridded Array. John Wiley & Sons, New York (1995)Google Scholar
  113. 113.
    Munk, B.A.: Frequency Selective Surfaces: Theory and Design. John Wiley & Sons, New York (2000)CrossRefGoogle Scholar
  114. 114.
    Munk, B.A.: Finite Antenna Arrays and FSS. John Wiley & Sons, New York (2002)Google Scholar
  115. 115.
    Severin, H.: Nonreflecting absorbing for microwave radiation. IRE Trans. Antennas Propagation 4(3), 385–392 (1956)CrossRefGoogle Scholar
  116. 116.
    Emerson, W.: Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Trans. Antennas Propagation 21(4), 484–490 (1973)CrossRefGoogle Scholar
  117. 117.
    Saville, P.: Review of Radar Absorbing Materials, Technical Memorandum, Defence R& D Canada-Atlantic, DRDC Atlantic TM 2005-003 (January 2005)Google Scholar
  118. 118.
    Musal, H.M., Hahn, H.T.: Thin-layer electromagnetic absorber design. IEEE Trans. Magnetics 25(5), 3851–3853 (1989)CrossRefGoogle Scholar
  119. 119.
    Michielssen, E., Ranjithan, S., Mittra, R.: Optimal multilayer filter design using real coded genetic algorithms. IEE Proc. J-Optoelectronics 139(6), 413–420 (1992)Google Scholar
  120. 120.
    Pesqué, J.J., Bouche, D.P., Mittra, R.: Optimization of multilayered antireflection coating using an optimal control method. IEEE Trans. Microwave Theory Techniques 40(9), 1789–1796 (1992)CrossRefGoogle Scholar
  121. 121.
    Michielssen, E., Sajer, J.M., Mittra, R.: Pareto-optimal design of broadband microwave absorbers using genetic algorithms. In: 1993 IEEE AP-S Int. Symp., Ann Arbor, MI, June 28-July 2, vol. 3, pp. 1167–1170 (1993)Google Scholar
  122. 122.
    Michielssen, E., Sajer, J.M., Ranjithan, S., Mittra, R.: Design of lightweight, broad-band microwave absorbers using genetic algorithms. IEEE Trans. Microwave Theory Techniques 41(6), 1024–1031 (1993)CrossRefGoogle Scholar
  123. 123.
    Johnson, J.M., Rahmat-Samii, Y.: Genetic algorithm optimization for aerospace electromagnetic design and analysis. In: 1996 IEEE Aerospace Applications Conf., Aspen, CO, Febuary 3-10, vol. 1, pp. 87–102 (1996)Google Scholar
  124. 124.
    Weile, D.S., Michielssen, E., Goldberg, D.E.: Genetic algorithm design of Pareto optimal broadband microwave absorbers. IEEE Trans. Electromagn Compability 38(3), 518–525 (1996)CrossRefGoogle Scholar
  125. 125.
    Mosallaei, H., Rahmat-Samii, Y.: RCS reduction of canonical targets using genetic algorithm synthesized RAM. IEEE Trans. Antennas Propagation 48(10), 1594–1606 (2000)CrossRefGoogle Scholar
  126. 126.
    Qing, A.: Differential Evolution: Fundamentals and Applications in Electrical Engineering. John Wiley & IEEE, New York (2009)Google Scholar
  127. 127.
    Qing, A.: Vector spectral-domain method for the analysis of frequency selective surfaces. Progress Electromagnetics Research 65, 201–232 (2006)CrossRefGoogle Scholar
  128. 128.
    Lee, C.K.: Modelling and Design of Frequency Selective Surfaces for Reflector Antennas, Ph. D. Dissertation, University of Kent at Canterbury (1987)Google Scholar
  129. 129.
    Qing, A.: Design of Practical Electromagnetic Structures Using Vector Spectral-domain Method and Differential Evolution, Technical Report TL/EM/09/004, Temasek Laboratories, National University of Singapore (September 7, 2009)Google Scholar
  130. 130.
    Langley, R.J., Parker, E.A.: Equivalent circuit model for arrays of square loops. Electronics Letters 18(7), 294–296 (1982)CrossRefGoogle Scholar
  131. 131.
    Eibert, T.F., Volakis, J.L.: Fast spectral domain algorithm for hybrid finite element/boundary integral modelling of doubly periodic structures. IEE Proc. H-Microwaves Antennas Propagation 147(5), 329–334 (2000)CrossRefGoogle Scholar
  132. 132.
    Ko, W., Mittra, R.: Implementation of Floquet boundary condition in FDTD for FSS analysis. In: 1993 IEEE APS Int. Symp., Ann Arbor, MI, June 28-July 2, vol. 1, pp. 14–17 (1993)Google Scholar
  133. 133.
    Gurel, L., Chew, W.C.: Recursive T-matrix algorithms for the solution of electromagnetic scattering from strip and patch geometries. IEEE Trans. Antennas Propagat. 41(1), 91–99 (1993)CrossRefGoogle Scholar
  134. 134.
    Mittra, R.: Genetic algorithm: the last word for solving all of your design problems? In: 1997 IEEE AP-S Int. Symp., Montreal, Que. Canada, July 13-18, vol. 3, pp. 1672–1675 (1997)Google Scholar
  135. 135.
    Weile, D.S., Michielssen, E.: The use of domain decomposision genetic algorithms exploiting model reduction for the design of frequency selective surfaces. Computer Methods Applied Mechanics Engineering 186, 439–458 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  136. 136.
    Luo, X.F., Lee, C.K., Qing, A.: Design of frequency selective surfaces (FSS) using differential evolution strategy (DES). In: 27th ESA Antenna Technology Workshop on Innovative Periodic Antennas: Electromagnetic Bandgap, Left handed materials, Fractal and Frequency Selective Surfaces, Santiago de Compostela, Spain, March 9-11, pp. 201–207 (2004)Google Scholar
  137. 137.
    Luo, X.F., Teo, P.T., Qing, A., Lee, C.K.: Design of double-square-loop frequency selective surfaces using differential evolution strategy coupled with equivalent circuit model. In: 4th Int. conf. Microwave Millimeter Wave Technology, Beijing, China, August 18-21, pp. 94–97 (2004)Google Scholar
  138. 138.
    Luo, X.F., Qing, A., Lee, C.K.: On the application of differential evolution strategy to the design of frequency selective surfaces. Int. J. RF Microwave Computer-Aided Engineering 15(2), 173–180 (2005)CrossRefGoogle Scholar
  139. 139.
    Luo, X.F., Teo, P.T., Qing, A., Lee, C.K.: Design of double-square-loop frequency selective surfaces using differential evolution strategy coupled with equivalent circuit model. Microwave Optical Technology Letters 44(2), 159–162 (2005)CrossRefGoogle Scholar
  140. 140.
    Qing, A., Xu, X., Gan, Y.B.: Effective wave number of composite materials with oriented randomly distributed inclusions. In: 2003 IEEE AP-S Int. Symp., Columbus, Ohio, June 22-27, vol. 4, pp. 655–658 (2003)Google Scholar
  141. 141.
    Qing, A., Xu, X., Gan, Y.B.: Effective wave number of composite materials with randomly distributed inclusions. In: Int. Conf. Materials Advanced Technologies, Singapore, December 7-12, pp. 44–47 (2003)Google Scholar
  142. 142.
    Qing, A., Xu, X., Gan, Y.B.: Anisotropy of composite materials with inclusion with orientation preference. IEEE Trans. Antennas Propagation 53(2), 737–744 (2005)CrossRefGoogle Scholar
  143. 143.
    Qing, A., Xu, X., Gan, Y.B.: Effective permittivity tensor of composite material with aligned spheroidal inclusions. J. Electromagnetic Waves Applications 18(7), 899–910 (2004)CrossRefGoogle Scholar
  144. 144.
    Eisenblätter, A., Koster, A.: FAP Web – A Website about Frequency Assignment Problems, http://fap.zib.de/ (last accessed on December 28, 2009)
  145. 145.
    Maximiano, M.D.S., Vega-Rodriguez, M.A., Gomez-Pulido, J.A., Sánchez-Pérez, J.M.: Solving the frequency assignment problem with differential evolution. In: 15th Int. Conf. Software Telecommunications Computer Networks, Split, Croatia, September 27-29, pp. 119–123 (2007)Google Scholar
  146. 146.
    Bernardino, E., Bernardino, A., Pérez, J.M.S., Pulido, J.A.G., Rodríguez, M.A.V.: Solving the frequency assignment problem using genetic algorithms, evolutionary simulated annealing and differential evolution. In: IASTED Int. Conf. Software Engineering, pp. 330–335 (2008)Google Scholar
  147. 147.
    Chaves-Gonzalez, J.M., Maximiano, M.D., Vega-Rodriguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Comparing hybrid versions of SS and DE to solve a realistic FAP problem. In: Corchado, E., Abraham, A., Pedrycz, W. (eds.) HAIS 2008. LNCS (LNAI), vol. 5271, pp. 257–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  148. 148.
    Maximiano, M.D.S., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Analysis of parameter settings for differential evolution algorithm to solve a real-world frequency assignment problem in GSM networks. In: 2nd Int. Conf. Advanced Engineering Computing Applications Sciences, Valencia, Spain, September 29-October 4, pp. 77–82 (2008)Google Scholar
  149. 149.
    Priem Mendes, S., Gómez Pulido, J.A., Vega Rodríguez, M.A., Jaraíz Simón, M.D., Sánchez Pérez, J.M.: A differential evolution based algorithm to optimize the radio network design problem. In: 2nd IEEE Int. Conf. e-Science Grid Computing, Amsterdam, The Netherlands, December 2006, pp. 119–125 (2006)Google Scholar
  150. 150.
    Vega-Rodriguez, M.A., Gomez-Pulido, J.A., Alba, E., Vega-Perez, D., Priem-Mendes, S.: Using omnidirectional BTS and different evolutionary approaches to solve the RND problem. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 853–860. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  151. 151.
    Vega-Rodriguez, M.A., Gomez-Pulido, J.A., Alba, E., Vega-Perez, D., Priem-Mendes, S., Molina, G.: Evaluation of different metaheuristics solving the RND problem. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 101–110. Springer, Heidelberg (2007)Google Scholar
  152. 152.
    Du, J., Li, Y.: Optimization of antenna configuration for MIMO systems. IEEE Trans. Communications 53(9), 1451–1454 (2005)CrossRefGoogle Scholar
  153. 153.
    Develi, I.: Determination of optimum antenna number ratio based on differential evolution for MIMO systems under low SNR conditions. Wireless Personal Communications 43(4), 1667–1673 (2007)CrossRefGoogle Scholar
  154. 154.
    Potter, C., Venayagamoorthy, G.K., Kosbar, K.: MIMO beam-forming with neural network channel prediction trained by a novel PSO-EA-DEPSO algorithm. In: 2008 IEEE World Congress Computational Intelligence/2008 IEEE Int. Joint Conf. Neural Networks, Hong Kong, June 1-6, pp. 3338–3344 (2008)Google Scholar
  155. 155.
    Buderi, R.: The Invention That Changed the World: How a Small Group of Radar Pioneers Won the Second World War and Launched a Technological Revolution. Simon & Schuster, New York (1996)Google Scholar
  156. 156.
    Wei, G., Wu, S., Mao, E.: Differential evolution for target motion parameter estimation. In: 2003 IEEE Int. Conf. Neural Networks Signal Processing, Nanjing, China, December 14-17, vol. 1, pp. 563–566 (2003)Google Scholar
  157. 157.
    Perez-Bellido, A.M., Salcedo-Sanz, S., Ortiz-Garcia, E.G., Portilla-Figueras, J.A., Lopez-Ferreras, F.: A comparison of memetic algorithms for the spread spectrum radar polyphase codes design problem. Engineering Applications Artificial Intelligence 21(8), 1233–1238 (2008)CrossRefGoogle Scholar
  158. 158.
    Chew, W.C., Jin, J.M., Michielssen, E., Song, J. (eds.): Fast and Efficient Algorithms in Computational Electromagnetics. Artech House, Boston (2001)Google Scholar
  159. 159.
    Rekanos, I.T., Yioultsis, T.V.: Convergence enhancement for the vector finite element modeling of microwaves and antennas via differential evolution. AEU Int. J. Electronics Communications 60(6), 428–434 (2006)CrossRefGoogle Scholar
  160. 160.
    Paul, C.R.: Introduction to Electromagnetic Compatibility, 2nd edn. John Wiley, New York (2006)Google Scholar
  161. 161.
    Regué, J.R., Ribó, M., Gomila, J., Pérez, A., Martin, A.: Modeling of radiating equipment by distributed dipoles using metaheuristic methods. In: IEEE Int. Symp. Electromagnetic Compatibility, Chicago, IL, August 8-12, vol. 2, pp. 596–601 (2005)Google Scholar
  162. 162.
    Electromagnetic Formation Flight, NRO DII Final Review, (August 29, 2003)Google Scholar
  163. 163.
    Shan, D.M., Chen, Z.N., Wu, X.H.: Signal optimization for UWB radio systems. IEEE Trans. Antennas Propagation 53(7), 2178–2184 (2005)CrossRefGoogle Scholar
  164. 164.
    Develi, I.: Differential evolution based prediction of rain attenuation over a LOS terrestrial links situated in the southern United Kingdom. Radio Science 42(3), Art. No. RS3011 (June 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Anyong Qing
    • 1
  1. 1.Temasek LaboratoriesNational University of SingaporeSingapore

Personalised recommendations