Advertisement

A Literature Survey on Differential Evolution

  • Anyong Qing
Chapter
  • 1.2k Downloads
Part of the Evolutionary Learning and Optimization book series (ALO, volume 4)

Motivations

Eliminating Inconsistencies

It has been observed since 2004 that there are many inconsistent or even false claims prevailing in the community of differential evolution [1]. Two measures have been taken to clarify them. The first is a system level parametric study on differential evolution [1]-[4]. The second is the large scale literature survey mentioned here. It is one of the foundation stones of this book.

Keywords

Differential Evolution Computational Intelligence Evolutionary Computation Soft Computing Differential Evolution Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Qing, A.: Differential Evolution: Fundamentals and Applications in Electrical Engineering. John Wiley, New York (2009)Google Scholar
  2. 2.
    Qing, A.: Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems. IEEE Trans. Geosci. Remote Sens. 44(1), 116–125 (2006)CrossRefGoogle Scholar
  3. 3.
    Qing, A.: A parametric study on differential evolution based on benchmark electromagnetic inverse scattering problem. In: 2007 IEEE Congress Evolutionary Computation, Singapore, September 25-28, pp. 1904–1909 (2007)Google Scholar
  4. 4.
    Qing, A.: A study on base vector for differential evolution. In: 2008 IEEE World Congress Computational Intelligence/2008 IEEE Congress Evolutionary Computation, Hong Kong, June 1-6, pp. 550–556 (2008)Google Scholar
  5. 5.
    Storn, R.: Modeling and Optimization of PET-Redundancy Assignment for MPEG-Sequences, Technical Report TR-95-018, International Computer Science Institute (May 1995)Google Scholar
  6. 6.
    Storn, R.: Differential Evolution Design of an IIR-Filter with Requirements for Magnitude and Group Delay, Technical Report TR-95-026, International Computer Science Institute (June 1995)Google Scholar
  7. 7.
    Storn, R., Price, K.V.: Differential Evolution - A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical Report TR-95-012, International Computer Science Insitute (Mar 1995)Google Scholar
  8. 8.
    Price, K.V.: Differential evolution: a fast and simple numerical optimizer. In: 1996 Biennial Conf. North American Fuzzy Information Processing Society, Berkeley, CA, June 19-22, pp. 524–527 (1996)Google Scholar
  9. 9.
    Storn, R.: Differential evolution design of an IIR-filter. In: 1996 IEEE Int. Conf. Evolutionary Computation, Nagoya, May 20-22, pp. 268–273 (1996)Google Scholar
  10. 10.
    Storn, R.: On the usage of differential evolution for function optimization. In: 1996 Biennial Conf. North American Fuzzy Information Processing Society, Berkeley, CA, June 19-22, pp. 519–523 (1996)Google Scholar
  11. 11.
    Storn, R.: System Design by Constraint Adaptation and Differential Evolution, Technical Report TR-96-039, International Computer Science Institute (November 1996)Google Scholar
  12. 12.
    Storn, R., Price, K.V.: Minimizing the real functions of the ICEC’96 contest by differential evolution. In: 1996 IEEE Int. Conf. Evolutionary Computation, Nagoya, May 20-22, pp. 842–844 (1996)Google Scholar
  13. 13.
    Price, K.V.: Differential evolution vs. the functions of the 2nd ICEO. In: 1997 IEEE Int. Conf. Evolutionary Computation, Indianapolis, IN, April 13-16, pp. 153–157 (1997)Google Scholar
  14. 14.
    Price, K., Storn, R.: Differential evolution: a simple evolution strategy for fast optimization. Dr. Dobb’s J. 22(4), 18–24, 78 (1997)MathSciNetGoogle Scholar
  15. 15.
    Storn, R., Price, K.V.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimization 11(4), 341–359 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lampinen, J.: A bibliography on differential evolution algorithm, Technical Report, Lappeenranta University of Technology, Department of Information Technology, Laboratory of Information Processing (2001) (last updated on October 14, 2002) available via internet, http://www2.lut.fi/~jlampine/debiblio.htm ( accessed on October 12, 2009)
  17. 17.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: a Practical Approach to Global Optimization. Springer, Berlin (2005)zbMATHGoogle Scholar
  18. 18.
    Feoktistov, V.: Differential Evolution: in Search of Solutions. Springer, Berlin (2006)zbMATHGoogle Scholar
  19. 19.
    Chakraborty, U.K. (ed.): Advances in Differential Evolution. Springer, Berlin (2008)zbMATHGoogle Scholar
  20. 20.
    Onwubolu, G.C., Davendra, D.: Differential Evolution: A Handbook for Global Permutation-Based Combinatorial Optimization-Studies in Computational Intelligence, vol. 175. Springer, Heidelberg (2009)Google Scholar
  21. 21.
    Corn, D., Dorigo, M., Glover, F. (eds.): New Ideas in Optimization. McGraw-Hill, London (1999)Google Scholar
  22. 22.
    Mastorakis, N.E. (ed.): Recent Advances in Circuits and Systems. World Scientific, Singapore (1998)Google Scholar
  23. 23.
    Topping, B.H.V. (ed.): Developments in computational mechanics with high performance computing. Civil-Comp Press, Edinburgh (1999)Google Scholar
  24. 24.
    Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.): Intelligent Technologies - Theory and Applications. IOS Press, Amsterdam (2002)Google Scholar
  25. 25.
    Huijsing, J.H., Steyaert, M., van Roermund, A. (eds.): Analog Circuit Design: Scalable Analog Circuit Design, High Speed D/A Converters, RF Power Amplifiers. Kluwer Academic Publishers, New York (2003)Google Scholar
  26. 26.
    Sarker, R., Mohammadian, M., Yao, X. (eds.): Evolutionary Optimization. Kluwer Academic Publishers, New York (2003)Google Scholar
  27. 27.
    Johnston, R.L. (ed.): Applications of Evolutionary Computation in Chemistry-Structure & Bonding, vol. 110. Springer, Berlin (2004)Google Scholar
  28. 28.
    Onwubolu, G.C., Babu, B.V.: New Optimization Techniques in Engineering. Studies in Fuzziness and Soft Computing, vol. 141. Springer, Berlin (2004)zbMATHGoogle Scholar
  29. 29.
    Zhong, J.J. (ed.): Biomanufacturing-Advances in Biochemical Engineering/Biotechnology, vol. 87. Springer, Berlin (2004)Google Scholar
  30. 30.
    Grigoras, D., Nicolau, A. (eds.): Concurrent information processing and computing. NATO science series, series III, Computer and systems sciences, vol. 195. IOS Press, Amsterdam (May 2005)zbMATHGoogle Scholar
  31. 31.
    Hart, W.E., Krasnogor, N., Smith, J.E. (eds.): Recent Advances in Memetic Algorithms. Studies in Fuzziness and Soft Computing, vol. 166. Springer, Berlin (2005)zbMATHGoogle Scholar
  32. 32.
    Hoffmann, F., Köppen, M., Klawonn, F., Roy, R. (eds.): Soft Computing: Methodologies and Applications-Advances in Soft Computing, vol. 32. Springer, Berlin (2005)Google Scholar
  33. 33.
    Palit, A.K., Popovic, D.: Computational Intelligence in Time Series Forecasting: Theory and Engineering Applications. Springer, Berlin (2005)zbMATHGoogle Scholar
  34. 34.
    Pieruci, S. (ed.): Computer-Aided Chemical Engineering. Elsevier, Amsterdam (2005)Google Scholar
  35. 35.
    Tan, K.C., Khor, E.F., Lee, T.H.: Multiobjective Evolutionary Algorithms and Applications. Springer, Berlin (2005)zbMATHGoogle Scholar
  36. 36.
    Abraham, A., de Baets, B., Köppen, M., Nickolay, B. (eds.): Applied Soft Computing Technologies: The Challenge of Complexity-Applied Soft Computing, vol. 34. Springer, Berlin (2006)Google Scholar
  37. 37.
    Abraham, A., Grosan, C., Ramos, V. (eds.): Stigmergic Optimization-Studies in Computational Intelligence, vol. 31. Springer, Berlin (2006)Google Scholar
  38. 38.
    Abraham, A., Grosan, C., Ramos, V. (eds.): Swarm Intelligence in Data Mining. Studies in Computational Intelligence, vol. 34. Springer, Berlin (2006)zbMATHGoogle Scholar
  39. 39.
    Alba, E., Marti, R.: Metaheuristic Procedures for Training Neutral Networks-Operations Research/Computer Science Interfaces Series, vol. 36. Springer, Berlin (2006)Google Scholar
  40. 40.
    Brabazon, A., O’Neill, M.: Biologically Inspired Algorithms for Financial Modelling. Spriinger, Berlin (2006)zbMATHGoogle Scholar
  41. 41.
    Burke, E.K., Kendall, G. (eds.): Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. Springer, Berlin (2006)Google Scholar
  42. 42.
    Caiti, A., Chapman, N.R., Hermand, J.P., Jesus, S.M. (eds.): Acoustic Sensing Techniques for the Shallow Water Environment: Inversion Methods and Experiments. Springer, Berlin (2006)Google Scholar
  43. 43.
    Castro-López, R., Fernández, F.V., Guerra-Vinuesa, O., Rodríguez-Vázquez, Á.: Reuse-Based Methodologies and Tools in the Design of Analog and Mixed-Signal Integrated Circuits. Springer, Berlin (2006)Google Scholar
  44. 44.
    Dzemyda, G., Šsltenis, V., Žilinskas, A. (eds.): Stochastic and Global Optimization. Springer, Berlin (2006)Google Scholar
  45. 45.
    Jin, Y. (ed.): Multi-Objective Machine Learning. Studies in Computational Intelligence, vol. 16. Springer, Berlin (2006)zbMATHGoogle Scholar
  46. 46.
    Li, Z., Halang, W.A., Chen, G.: Integration of Fuzzy Logic and Chaos. Theory. Studies in Fuzziness and Soft Computing, vol. 187. Springer, Berlin (2006)Google Scholar
  47. 47.
    Liberti, L., Maculan, N. (eds.): Global Optimization: from Theory to Implementation-Nonconvex Optimization and Its Applications, vol. 84. Springer, Berlin (2006)Google Scholar
  48. 48.
    Liu, J., Jin, X., Tsui, K.C.: Autonomy Oriented Computing. Kluwer Academic Publishers, Bonston (2006)Google Scholar
  49. 49.
    Nedjah, N., Alba, E., de Macedo Mourelle, L. (eds.): Parallel Evolutionary Computations. Studies in Computational Intelligence, vol. 22. Springer, Berlin (2006)zbMATHGoogle Scholar
  50. 50.
    Nedjah, N., de Macedo Mourelle, L. (eds.): Swarm Intelligent Systems. Studies in Computational Intelligence. Springer, Berlin (2006)Google Scholar
  51. 51.
    Pintér, J.D. (ed.): Global Optimization: Scientific and Engineering Case Studies-Nonconvex Optimization and Its Applications, vol. 85. Springer, Berlin (2006)Google Scholar
  52. 52.
    Steyaert, M., van Roermund, A.H.M., Huijsing, J.H. (eds.): Analog Circuit Design. Springer, Berlin (2006)Google Scholar
  53. 53.
    Tiwari, A., Knowles, J., Avineri, E., Dahal, K., Roy, R. (eds.): Applications of Soft Computing: Recent Trends. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  54. 54.
    Wiak, S., Krawczyk, A., Trlep, M. (eds.): Computer Engineering in Applied Electromagnetism. Springer, Berlin (2006)Google Scholar
  55. 55.
    Zhang, H., Liu, D.: Fuzzy Modeling and Fuzzy Control. Birkhäuser, Boston (2006)zbMATHGoogle Scholar
  56. 56.
    Zhang, G.Q., Van Driel, W.D., Fan, X.J. (eds.): Mechanics of Microelectronics. Springer, Berlin (2006)zbMATHGoogle Scholar
  57. 57.
    Zomaya, A.Y. (ed.): Handbook of Nature-Inspired and Innovative Computing. Springer, Berlin (2006)Google Scholar
  58. 58.
    Zomaya, A.Y.: Parallel computing for bioinformatics and computational biology; models, enabling technologies, and case studies. John Wiley, New York (2006)Google Scholar
  59. 59.
    Chahl, J.S., Jain, L.C., Mizutani, A., Sato-Ilic, M. (eds.): Innovations in Intelligent Machines, vol. 1. Springer, Berlin (2007)Google Scholar
  60. 60.
    Cios, K.J., Pedrycz, W., Swiniarski, R.W., Kurgan, L.A.: Data Mining: A Knowledge Discovery Approach. Springer, Berlin (2007)zbMATHGoogle Scholar
  61. 61.
    Corchado, E., Corchado, J.M., Abraham, A. (eds.): Innovations in Hybrid Intelligent Systems-Advances in Soft Computing, vol. 44. Springer, Berlin (2007)Google Scholar
  62. 62.
    Ebashi, S., Ohtsuki, I.: Regulatory Mechanisms of Striated Muscle Contraction-Advances in Experimental Medicine and Biology, vol. 592. Springer, Berlin (2007)CrossRefGoogle Scholar
  63. 63.
    Grosan, C., Abraham, A., Ishibuchi, H. (eds.): Hybrid Evolutionary Algorithms. Studies in Computational Intelligence, vol. 75. Springer, Berlin (2007)zbMATHGoogle Scholar
  64. 64.
    Jain, L.C., Palade, V., Srinivasan, D.: Advances in Evolutionary Computing for System Design. Studies in Computational Intelligence, vol. 66. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  65. 65.
    Kaburlasos, V.G., Ritter, G.X.: Computational Intelligence Based on Lattice Theory. Studies in Computational Intelligence, vol. 67. Springer, Berlin (2007)zbMATHGoogle Scholar
  66. 66.
    Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary Algorithms. Studies in Computational Intelligence, vol. 54. Springer, Berlin (2007)zbMATHGoogle Scholar
  67. 67.
    Melin, P., Castillo, O., Ramírez, E.G., Kacprzyk, J., Pedrycz, W. (eds.): Analysis and Design of Intelligent Systems using Soft Computing Techniques-Advances in Soft Computing, vol. 41. Springer, Berlin (2007)Google Scholar
  68. 68.
    Nedjah, N., Abraham, A., de Macedo Mourelle, L. (eds.): Computational Intelligence in Information Assurance and Security. Studies in Computational Intelligence, vol. 57. Springer, Berlin (2007)Google Scholar
  69. 69.
    Nedjah, N., dos Santos Coelho, L., de Macedo Mourelle, L.: Mobile Robots: The Evolutionary Approach. Studies in Computational Intelligence, vol. 50. Springer, Berlin (2007)zbMATHCrossRefGoogle Scholar
  70. 70.
    Saad, A., Avineri, E., Dahal, K., Sarfraz, M., Roy, R.: Soft Computing in Industrial Applications: Recent and Emerging Methods and Techniques-Advances in Soft Computing, vol. 39. Springer, Berlin (2007)Google Scholar
  71. 71.
    Sobh, T., Elleithy, K., Mahmood, A., Karim, M.: Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications. Springer, Berlin (2007)CrossRefGoogle Scholar
  72. 72.
    Suri, J.S., Farag, A.A.: Deformable Models: Biomedical and Clinical Applications. Springer, Berlin (2007)zbMATHCrossRefGoogle Scholar
  73. 73.
    Törn, A., Žilinskas, J.: Models and Algorithms for Global Optimization: Essays Dedicated to Antanas Žilinskas on the Occasion of His 60th Birthday. Springer, Berlin (2007)zbMATHGoogle Scholar
  74. 74.
    Valavanis, K.P. (ed.): Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy. Springer, Berlin (2007)zbMATHGoogle Scholar
  75. 75.
    Welcker, K.: Evolutionäre Algorithmen, Teubner (2007)Google Scholar
  76. 76.
    Yang, S., Ong, Y.S., Jin, Y.: Evolutionary Computation in Dynamic and Uncertain Environments. Studies in Computational Intelligence, vol. 51. Springer, Berlin (2007)zbMATHGoogle Scholar
  77. 77.
    Abraham, A., Grosan, C., Pedrycz, W. (eds.): Engineering Evolutionary Intelligent Systems. Studies in Computational Intelligence, vol. 82. Springer, Berlin (2008)zbMATHGoogle Scholar
  78. 78.
    Ao, S.I., Riger, B., Chen, S.S. (eds.): Advances in Computational Algorithms and Data Analysis. Lecture Notes Electrical Engineering, vol. 14. Springer, Berlin (2008)Google Scholar
  79. 79.
    Brabazon, A., O’Neill, M. (eds.): Natural Computing in Computational Finance. Studies in Computational Intelligence, vol. 100. Springer, Berlin (2008)zbMATHGoogle Scholar
  80. 80.
    Castillo, O., Xu, L., Ao, S.I. (eds.): Trends in Intelligent Systems and Computer Engineering. Lecture Notes Electrical Engineering, vol. 6. Springer, Berlin (2008)zbMATHGoogle Scholar
  81. 81.
    Chaturvedi, D.K.: Soft Computing: Techniques and Its Applications in Electrical Engineering. Studies in Computational Intelligence, vol. 103. Springer, Berlin (2008)zbMATHGoogle Scholar
  82. 82.
    Cotta, C., Reich, S., Schaefer, R., Ligęza, A. (eds.): Knowledge-Driven Computing. Studies in Computational Intelligence, vol. 102. Springer, Berlin (2008)zbMATHGoogle Scholar
  83. 83.
    Cotta, C., Seraux, M., Sörensen, K. (eds.): Adaptive and Multilevel Metaheuristics-Studies in Computational Intelligence, vol. 136. Springer, Heidelberg (2008)Google Scholar
  84. 84.
    Cotta, C., van Hemert, J. (eds.): Recent Advances in Evolutionary Computation for Combinatorial Optimization. Studies in Computational Intelligence, vol. 153. Springer, Berlin (2008)zbMATHGoogle Scholar
  85. 85.
    Fulcher, J., Jain, L.C. (eds.): Computational Intelligence: a Compendium. Studies in Computational Intelligence, vol. 115. Springer, Berlin (2008)zbMATHGoogle Scholar
  86. 86.
    Ghosh, A., Dehuri, S., Ghosh, S. (eds.): Multi-objective Evolutionary Algorithms for Knowledge Discovery from Databases. Studies in Computational Intelligence, vol. 98. Springer, Berlin (2008)zbMATHGoogle Scholar
  87. 87.
    Grosse, C.U., Ohtsu, M. (eds.): Acoustic Emission Testing. Springer, Berlin (2008)Google Scholar
  88. 88.
    Kelemen, A., Abraham, A., Chen, Y. (eds.): Computational Intelligence in Bioinformatics. Studies in Computational Intelligence, vol. 94. Springer, Berlin (2008)Google Scholar
  89. 89.
    Kontoghiorghes, E.J., Rustem, B., Winker, P. (eds.): Computational Methods in Financial Engineering: Essays in Honour of Manfred Gilli. Springer, Berlin (2008)zbMATHGoogle Scholar
  90. 90.
    Kramer, O.: Self-Adaptive Heuristics for Evolutionary Computation. Studies in Computational Intelligence, vol. 147. Springer, Berlin (2008)zbMATHGoogle Scholar
  91. 91.
    Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.): Nature Inspired Cooperative Strategies for Optimization. Studies in Computational Intelligence, vol. 129. Springer, Berlin (2008)zbMATHGoogle Scholar
  92. 92.
    Lee, K.Y., El-Sharkawi, M.A. (eds.): Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems. Wiley-IEEE Press, New York (2008)Google Scholar
  93. 93.
    Liang, S. (ed.): Advances in Land Remote Sensing: System, Modeling, Inversion and Application. Springer, Berlin (2008)Google Scholar
  94. 94.
    Liu, Y., Sun, A., Loh, H.T., Lu, W.F., Lim, E.P. (eds.): Advances of Computational Intelligence in Industrial Systems. Studies in Computational Intelligence, vol. 116. Springer, Berlin (2008)Google Scholar
  95. 95.
    Prasad, B. (ed.): Soft Computing Applications in Industry. Studies in Fuzziness and Soft Computing, vol. 226. Springer, Berlin (2008)zbMATHGoogle Scholar
  96. 96.
    Prasad, B. (ed.): Soft Computing Applications in Business. Studies in Fuzziness and Soft Computing, vol. 230. Springer, Berlin (2008)zbMATHGoogle Scholar
  97. 97.
    Prokhorov, D. (ed.): Computational Intelligence in Automotive Applications. Studies in Computational Intelligence, vol. 132. Springer, Berlin (2008)Google Scholar
  98. 98.
    Riolo, R., Soule, T., Worzel, B. (eds.): Genetic Programming Theory and Practice, vol. 5. Springer, Berlin (2008)zbMATHGoogle Scholar
  99. 99.
    Siarry, P., Michalewicz, Z. (eds.): Advances in Metaheuristics for Hard Optimization. Springer, Berlin (2008)zbMATHGoogle Scholar
  100. 100.
    Smolinski, T.G., Milanova, M.G., Hassanien, A.E. (eds.): Applications of Computational Intelligence in Biology. Studies in Computational Intelligence, vol. 122. Springer, Berlin (2008)zbMATHGoogle Scholar
  101. 101.
    Smolinski, T.G., Milanova, M.G., A.E.: Computational Intelligence in Biomedicine and Bioinformatics. Studies in Computational Intelligence, vol. 151. Springer, Berlin (2008)CrossRefGoogle Scholar
  102. 102.
    Tizhoosh, H.R., Ventresca, M. (eds.): Oppositional Concepts in Computational Intelligence. Studies in Computational Intelligence, vol. 155. Springer, Berlin (2008)zbMATHGoogle Scholar
  103. 103.
    Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems II. Springer, Berlin (2008)Google Scholar
  104. 104.
    Wiak, S., Krawczyk, A., Dolezel, I. (eds.): Intelligent Computer Techniques in Applied Electromagnetics. Studies in Computational Intelligence, vol. 119. Springer, Berlin (2008)Google Scholar
  105. 105.
    Xhafa, F., Abraham, A. (eds.): Metaheuristics for Scheduling in Industrial and Manufacturing Applications. Studies in Computational Intelligence, vol. 128. Springer, Berlin (2008)zbMATHGoogle Scholar
  106. 106.
    Yang, A., Shan, Y., Bui, L.T.: Success in Evolutionary Computation. Studies in Computational Intelligence, vol. 92. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
  107. 107.
    Zhang, J., Sanderson, A.C.: An approximate Gaussian model of differential evolution with spherical fitness function. In: 2007 IEEE Congress Evolutionary Computation, Singapore, september 25-28, pp. 2220–2228 (2007)Google Scholar
  108. 108.
    Montgomery, J.: Differential evolution: Difference vectors and movement in solution space. In: IEEE Congress Evolutionary Computation, Trondheim, Norway, May 18-21, pp. 2833–2840 (2009)Google Scholar
  109. 109.
    Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm. In: 6th Int. Mendel Conf. Soft Computing, Brno, Czech Republic, June 7-9, pp. 76–83 (2000)Google Scholar
  110. 110.
    Sukov, A., Borisov, A.: A study of search technique in differential evolution. In: 7th Int. MENDEL Conf. Soft Computing, Brno, Czech Republic, June 6-8, pp. 144–148 (2001)Google Scholar
  111. 111.
    Tomislav, Š.: Improving convergence properties of the differential evolution algorithm. In: 8th Int. MENDEL Conf. Soft Computing, Brno, Czech Republic, June 5-7, pp. 80–86 (2002)Google Scholar
  112. 112.
    Ali, M.M.: Differential evolution with preferential crossover. European J. Operational Research 181(3), 1137–1147 (2007)zbMATHCrossRefGoogle Scholar
  113. 113.
    Sutton, A.M., Lunacek, M., Whitley, L.D.: Differential evolution and non-separability: using selective pressure to focus search. In: 2007 Genetic Evolutionary Computation Conf., London, UK, July 7-11, pp. 1428–1435 (2007)Google Scholar
  114. 114.
    Zaharie, D.: Statistical properties of differential evolution and related random search algorithms. In: 18th Symp. Computational Statistics, Oporto, Portugal, August 24-29, pp. 473–485 (2008)Google Scholar
  115. 115.
    Dasguptu, S., Das, S., Biswas, A., Abraham, A.: On stability and convergence of the population-dynamics in differential evolution. AI Communications 22(1), 1–20 (2009)MathSciNetGoogle Scholar
  116. 116.
    Zielinski, K., Laur, R.: Variants of differential evolution for multi-objective optimization. In: 2007 IEEE Symp. Computational Intelligence Multicriteria Decision Making, Honolulu, HI, April 1-5, pp. 91–98 (2007)Google Scholar
  117. 117.
    Zaharie, D.: A comparative analysis of crossover variants in differential evolution. In: Int. Multiconference Computer Science Information Technology, pp. 171–181 (2007)Google Scholar
  118. 118.
    Zaharie, D.: Parameter adaption in differential evolution by controlling the population diversity. In: 4th Int. Workshop Symbolic Numeric Algorithms Scientific Computing, Timi¸ soara, Romania, October 9-12, pp. 385–397 (2002)Google Scholar
  119. 119.
    Zaharie, D.: Control of population diversity and adaptation in differential evolution algorithms. In: 9th Int. Mendel Conf. Soft Computing, Brno, Czech Republic, June 2003, pp. 41–46 (2003)Google Scholar
  120. 120.
    Hajji, O., Brisset, S., Brochet, P.: A stop criterion to accelerate magnetic optimization process using genetic algorithms and finite element analysis. IEEE Trans. Magnetics 39(3 I), 1297–1300 (2003)CrossRefGoogle Scholar
  121. 121.
    Zielinski, K., Peters, D., Laur, R.: Run time analysis regarding stopping criteria for differential evolution and particle swarm optimization. In: 1st Int. Conf. Experiments/Process/System Modelling/Simulation/Optimization, Athens, Greece, July 6-9 (2005)Google Scholar
  122. 122.
    Zielinski, K., Peters, D., Laur, R.: Stopping criteria for single-objective optimization. In: 3rd Int. Conf. Computational Intelligence Robotics Autonomous Systems, Singapore, December 13-16 (2005)Google Scholar
  123. 123.
    Zielinski, K., Laur, R.: Stopping criteria for constrained optimization with particle swarms. In: 2nd Int. Conf. Bioinspired Optimization Methods Applications, Ljubljana, Slovenia, October 9-10, pp. 45–54 (2006)Google Scholar
  124. 124.
    Zielinski, K., Weitkemper, P., Laur, R., Kammeyer, K.D.: Examination of stopping criteria for differential evolution based on a power allocation problem. In: 10th Int. Conf. Optimization Electrical Electronic Equipment, Brasov, Romania, May 18-19, pp. 149–156 (2006)Google Scholar
  125. 125.
    Zielinski, K., Laur, R.: Stopping criteria for a constrained single-objective particle swarm optimization algorithm. Informatics (Ljubljana) 31(1), 51–59 (2007)zbMATHGoogle Scholar
  126. 126.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evolutionary Computation 1(1), 67–82 (1997)CrossRefGoogle Scholar
  127. 127.
    Michael, C., McGraw, G.: Opportunism and Diversity in Automated Software Test Data Generation, Technical Report RSTR-003-97-13, version 1.3, RST Corporation, Sterling, VA, USA (December 8, 1997)Google Scholar
  128. 128.
    Masters, T., Land, W.: A new training algorithm for the general regression neural network. In: 1997 IEEE Int. Conf. Systems Man Cybernetics, Orlando, FL, October 12-15, vol. 3, pp. 1990–1994 (1997)Google Scholar
  129. 129.
    Engle, R.F., Manganelli, S.: CAViaR: conditional autoregressive value at risk by regression quantiles, UCSD Economics Discussion Paper 99-20, University of California, San Diego, Department of Economics (October 1999)Google Scholar
  130. 130.
    Cafolla, A.A.: A new stochastic optimisation strategy for quantitative analysis of core level photoemission data. Surface Science 402-404, 561–565 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Anyong Qing
    • 1
  1. 1.Temasek LaboratoriesNational University of SingaporeSingapore

Personalised recommendations