Skip to main content

Discussion

  • Chapter
  • First Online:
Dense Matter in Compact Stars

Part of the book series: Lecture Notes in Physics ((LNP,volume 811))

  • 1125 Accesses

Abstract

Let us summarize what we have learned about compact stars and dense matter, having in mind the two questions we have formulated in the preface. In addition, let us also list a few things which would in principle have fitted into these lectures topic-wise. We haven’t discussed them in the main part because either I found them not suitable for a concise, and yet pedagogical, introduction or because they are simply beyond the scope of these lectures, such as some of the theoretical approaches to dense matter listed at the end of Sect. 6.2. And, well, some selection has to be made, so for some of the following points there is no good reason why they appear here and not in the main part. The volume of the main part is chosen such that it should conveniently fit into a one-semester course, maybe dropping one or two of the more specialized subsections. In Sect. 6.2 I will give some selected references where interested readers can find more information about the questions we haven’t addressed in the main part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Oscillatory modes of compact stars are classified according to their restoring force. In the case of r-modes, this is the Coriolis force.

  2. 2.

    In the case of a superfluid, there are in fact several bulk viscosities.

  3. 3.

    It is instructive to view this phenomenon in analogy to a type-II superconductor. There, a magnetic field (if sufficiently large but not too large) penetrates the superconductor through flux tubes. It partially destroys superconductivity, i.e., in the center of the flux tubes the order parameter is zero. Hence the analogy is superfluid – superconductor; angular momentum – magnetic field; vortices – flux tubes.

References

  1. Lindblom, L.: Neutron star pulsations and instabilities. [arXiv:astro-ph/0101136]

    Google Scholar 

  2. Jaikumar, P., Rupak, G., Steiner, A.W.: Viscous damping of r-mode oscillations in compact stars with quark matter. Phys. Rev. D 78, 123007 (2008). [arXiv:0806.1005 [nucl-th]]

    Article  ADS  Google Scholar 

  3. Alford, M.G., Schmitt, A., Rajagopal, K., Schäfer, T.: Color superconductivity in dense quark matter. Rev. Mod. Phys. 80, 1455 (2008). [arXiv:0709.4635 [hep-ph]]

    Article  ADS  Google Scholar 

  4. Madsen, J.: Bulk viscosity of strange dark matter, damping of quark star vibration, and the maximum rotation rate of pulsars. Phys. Rev. D 46, 3290 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  5. Alford, M.G., Schmitt, A.: Bulk viscosity in 2SC quark matter. J. Phys. G 34, 67 (2007). [arXiv:nucl-th/0608019]

    Article  ADS  Google Scholar 

  6. Link, B.: Constraining hadronic superfluidity with neutron star precession. Phys. Rev. Lett. 91, 101101 (2003). [arXiv:astro-ph/0302441]

    Article  ADS  Google Scholar 

  7. Aguilera, D.N.: Spin-one color superconductivity in compact stars? An analysis within NJL-type models. Astrophys. Space Sci. 308, 443 (2007). [arXiv:hep-ph/0608041]

    Article  ADS  Google Scholar 

  8. Page, D., Geppert, U., Weber, F.: The cooling of compact stars. Nucl. Phys. A 777, 497 (2006). [arXiv:astro-ph/0508056]

    Article  ADS  Google Scholar 

  9. Harding, A.K., Lai, D.: Physics of strongly magnetized neutron stars. Rep. Prog. Phys. 69, 2631 (2006)/ [arXiv:astro-ph/0606674]

    Article  ADS  Google Scholar 

  10. Haensel, P., Potekhin, A.Y., Yakovlev, D.G.: Neutron stars, Springer, Heidelberg (2007)

    Book  Google Scholar 

  11. Chamel, N., Haensel, P.: Physics of neutron star crusts. Living Rev. Rel. 11, 10 (2008). [arXiv:0812.3955 [astro-ph]]

    Google Scholar 

  12. Alcock, C., Farhi, E., Olinto, A.: Strange stars. Astrophys. J. 310, 261 (1986)

    Article  ADS  Google Scholar 

  13. Alford, M.G., Rajagopal, K., Reddy, S., Steiner, A.W.: The stability of strange star crusts and strangelets. Phys. Rev. D 73, 114016 (2006). [arXiv:hep-ph/0604134]

    Article  ADS  Google Scholar 

  14. Watts, A.L., Reddy, S.: Magnetar oscillations pose challenges for strange stars. Mon. Not. Roy. Astron. Soc. 379, L63 (2007). [arXiv:astro-ph/0609364]

    Article  ADS  Google Scholar 

  15. Anderson, P.W., Itoh, N.: Pulsar glitches and restlessness as a hard superfluidity phenomenon. Nature 256, 25 (1975)

    Article  ADS  Google Scholar 

  16. Mannarelli, M., Rajagopal, K., Sharma, R.: The rigidity of crystalline color superconducting quark matter, Phys. Rev. D 76, 074026 (2007). [arXiv:hep-ph/0702021]

    Article  ADS  Google Scholar 

  17. Stephanov, M.A.: QCD phase diagram: an overview. PoS LAT2006, 024 (2006). [arXiv:hep-lat/0701002]

    Google Scholar 

  18. Schmidt, C.: QCD thermodynamics at zero and non-zero density. PoS C POD2006, 002 (2006). [arXiv:hep-lat/0701019]

    Google Scholar 

  19. Buballa, M.: NJL model analysis of quark matter at large density. Phys. Rep. 407, 205 (2005). [arXiv:hep-ph/0402234]

    Article  ADS  Google Scholar 

  20. Blaschke, D., Fredriksson, S., Grigorian, H., Oztas, A.M., Sandin, F.: The phase diagram of three-flavor quark matter under compact star constraints. Phys. Rev. D 72, 065020 (2005). [arXiv:hep-ph/0503194]

    Article  ADS  Google Scholar 

  21. McLerran, L., Pisarski, R.D.: Phases of cold, dense quarks at large N c . Nucl. Phys. A 796, 83 (2007). [arXiv:0706.2191 [hep-ph]]

    Article  ADS  Google Scholar 

  22. Peeters, K., Zamaklar, M.: The string/gauge theory correspondence in QCD. Eur. Phys. J. ST 152, 113 (2007). [arXiv:0708.1502 [hep-ph]]

    Article  Google Scholar 

  23. Gubser, S.S., Karch, A.: From gauge-string duality to strong interactions: a Pedestrian’s guide. Ann. Rev. Nucl. Part. Sci. 59, 145 (2009). [arXiv:0901.0935 [hep-th]]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schmitt .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmitt, A. (2010). Discussion. In: Dense Matter in Compact Stars. Lecture Notes in Physics, vol 811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12866-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12866-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12865-3

  • Online ISBN: 978-3-642-12866-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics