Skip to main content

Secretory Organelles in Apicomplexa

  • Chapter
  • First Online:
Structures and Organelles in Pathogenic Protists

Part of the book series: Microbiology Monographs ((MICROMONO,volume 17))

  • 794 Accesses

Abstract

Apicomplexa interactions with their host are exquisitely dependent on unique secretory organelles that exocytose their contents during gliding motility, attachment, and host cell invasion. Recent developments boosted by molecular genetics and high throughput methods have unraveled a number of biological processes and allowed a better understanding of the role of these organelles in Apicomplexa biology. The major contribution of microneme proteins to the gliding motility, the cooperation of microneme and rhoptry neck proteins to the moving junction during invasion, and the major role played by rhoptry bulb proteins in high-jacking the host cell are the basis of new paradigms that underline the unique characteristics of intracellular parasitism developed by Apicomplexa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aikawa M, Miller LH, Johnson J, Rabbege J (1978) Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J Cell Biol 77:72–82

    Article  PubMed  CAS  Google Scholar 

  • Aikawa M, Miller LH, Rabbege JR, Epstein N (1981) Freeze-fracture study on the erythrocyte membrane during malarial parasite invasion. J Cell Biol 91:55–62

    Article  PubMed  CAS  Google Scholar 

  • Alexander DL, Mital J, Ward GE, Bradley P, Boothroyd JC (2005) Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog 1:e17

    Article  PubMed  Google Scholar 

  • Alexander DL, Kapur SA, Dubremetz JF, Boothroyd JC (2006) Plasmodium falciparum AMA1 (PfAMA1) binds a rhoptry neck protein homologous to TgRON4, a component of the moving junction in Toxoplasma. Eukaryot Cell 5:1169–1173

    Article  PubMed  CAS  Google Scholar 

  • Baldi DL, Andrews KT, Waller RF, Roos DS, Howard RF, Crabb BS, Cowman AF (2000) RAP1 controls rhoptry targeting of RAP2 in the malaria parasite Plasmodium falciparum. EMBO J 19:2435–2443

    Article  PubMed  CAS  Google Scholar 

  • Bannister LH, Mitchell GH, Butcher GA, Dennis ED (1986) Lamellar membranes associated with rhoptries in erythrocytic merozoites of Plasmodium knowlesi: a clue to the mechanism of invasion. Parasitology 92:291–303

    Article  PubMed  Google Scholar 

  • Bannister LH, Hopkins JM, Dluzewski AR, Margos G, Williams IT, Blackman MJ, Kocken CH, Thomas AW, Mitchell GH (2003) Plasmodium falciparum apical membrane antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during merozoite development. J Cell Sci 116:3825–3834

    Article  PubMed  CAS  Google Scholar 

  • Beisson J, Lefort-Tran M, Pouphile M, Rossignol M, Satir B (1976) Genetic analysis of membrane differentiation in Paramecium. Freeze-fracture study of the trichocyst cycle in wild-type and mutant strains. J Cell Biol 69:126–143

    Article  PubMed  CAS  Google Scholar 

  • Besteiro S, Bertrand-Michel J, Lebrun M, Vial H, Dubremetz JF (2008) Lipidomic analysis of Toxoplasma gondii tachyzoites rhoptries: further insights into the role of cholesterol. Biochem J 415:87–96

    Article  PubMed  CAS  Google Scholar 

  • Besteiro S, Michelin A, Poncet J, Dubremetz JF, Lebrun M (2009) Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog 5:e1000309

    Article  PubMed  Google Scholar 

  • Blackman MJ, Bannister LH (2001) Apical organelles of Apicomplexa: biology and isolation by subcellular fractionation. Mol Biochem Parasitol 117:11–25

    Article  PubMed  CAS  Google Scholar 

  • Blader IJ, Manger ID, Boothroyd JC (2001) Microarray analysis reveals previously unknown changes in Toxoplasma gondii-infected human cells. J Biol Chem 276:24223–24231

    Article  PubMed  CAS  Google Scholar 

  • Boothroyd JC, Dubremetz JF (2008) Kiss and spit: the dual roles of Toxoplasma rhoptries. Nat Rev Microbiol 6:79–88

    Article  PubMed  CAS  Google Scholar 

  • Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, Coombs GH, Dunn JD, Ferguson DJ, Sanderson SJ, Wastling JM, Boothroyd JC (2005) Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem 280:34245–34258

    Article  PubMed  CAS  Google Scholar 

  • Bromley E, Leeds N, Clark J, McGregor E, Ward M, Dunn MJ, Tomley F (2003) Defining the protein repertoire of microneme secretory organelles in the apicomplexan parasite Eimeria tenella. Proteomics 3:1553–1561

    Article  PubMed  CAS  Google Scholar 

  • Carruthers VB, Sibley LD (1999) Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Mol Microbiol 31:421–428

    Article  PubMed  CAS  Google Scholar 

  • Chandramohanadas R, Davis PH, Beiting DP, Harbut MB, Darling C, Velmourougane G, Lee MY, Greer PA, Roos DS, Greenbaum DC (2009) Apicomplexan parasites co-opt host calpains to facilitate their escape from infected cells. Science 324:794–797

    Article  PubMed  CAS  Google Scholar 

  • Coppens I, Dunn JD, Romano JD, Pypaert M, Zhang H, Boothroyd JC, Joiner KA (2006) Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell 125:261–274

    Article  PubMed  CAS  Google Scholar 

  • Culvenor JG, Day KP, Anders RF (1991) Plasmodium falciparum ring-infected erythrocyte surface antigen is released from merozoite dense granules after erythrocyte invasion. Infect Immun 59:1183–1187

    PubMed  CAS  Google Scholar 

  • Dowse TJ, Pascall JC, Brown KD, Soldati D (2005) Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion. Int J Parasitol 35:747–756

    Article  PubMed  CAS  Google Scholar 

  • Dubremetz JF (2007) Rhoptries are major players in Toxoplasma gondii invasion and host cell interaction. Cell Microbiol 9:841–848

    Article  PubMed  CAS  Google Scholar 

  • Dubremetz JF, Dissous C (1980) Characteristic proteins of micronemes and dense granules from Sarcocystis tenella zoites (Protozoa, Coccidia). Mol Biochem Parasitol 1:279–289

    Article  PubMed  CAS  Google Scholar 

  • Dubremetz JF, Ferreira E, Dissous C (1989) Isolation and partial characterization of rhoptries and micronemes from Eimeria nieschulzi zoites (Sporozoa, Coccidia). Parasitol Res 75:449–454

    Article  PubMed  CAS  Google Scholar 

  • Dubremetz JF, Achbarou A, Bermudes D, Joiner KA (1993) Kinetics and pattern of organelle exocytosis during Toxoplasma gondii/host-cell interaction. Parasitol Res 79:402–408

    Article  PubMed  CAS  Google Scholar 

  • El Hajj H, Lebrun M, Arold ST, Vial H, Labesse G, Dubremetz JF (2007) ROP18 Is a rhoptry kinase controlling the intracellular proliferation of Toxoplasma gondii. PLOS pathog 3:e14

    Article  PubMed  Google Scholar 

  • Endo T, Sethi KK, Piekarski G (1982) Toxoplasma gondii: calcium ionophore A23187-mediated exit of trophozoites from infected murine macrophages. Exp Parasitol 53:179–188

    Article  PubMed  CAS  Google Scholar 

  • Entzeroth R, Dubremetz JF, Hodick D, Ferreira E (1986) Immunoelectron microscopic demonstration of the exocytosis of dense granule contents into the secondary parasitophorous vacuole of Sarcocystis muris (Protozoa, Apicomplexa). Eur J Cell Biol 41:182–188

    PubMed  CAS  Google Scholar 

  • Entzeroth R, Konig A, Dubremetz JF (1991) Monoclonal antibodies identify micronemes and a new population of cytoplasmic granules cross-reacting with micronemes of cystozoites of Sarcocystis muris. Parasitol Res 77:59–64

    Article  PubMed  CAS  Google Scholar 

  • Foussard F, Leriche MA, Dubremetz JF (1991) Characterization of the lipid content of Toxoplasma gondii rhoptries. Parasitology 102(Pt 3):367–370

    Article  PubMed  CAS  Google Scholar 

  • Garnett JA, Liu Y, Leon E, Allman S, Friedrich N, Saouros S, Curry S, Soldati-Favre D, Davis B, Feizi T, Matthews S (2009) Detailed insights from microarray and crystallographic studies into carbohydrate recognition by microneme protein 1 (MIC1) of Toxoplasma gondii. Protein Sci 18:1935–1947

    Article  PubMed  CAS  Google Scholar 

  • Garnham PC, Bird RG, Baker JR, Bray RS (1961) Electron microscope studies of motile stages of malaria parasites. II. The fine structure of the sporozoite of Laverania (Plasmodium) falcipara. Trans R Soc Trop Med Hyg 55:98–102

    Article  PubMed  CAS  Google Scholar 

  • Gustafson PV, Agar HD, Cramer DI (1954) An electron microscope study of Toxoplasma. Am J Trop Med Hyg 3:1008–1021

    PubMed  CAS  Google Scholar 

  • Hakansson S, Charron AJ, Sibley LD (2001) Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole. EMBO J 20:3132–3144

    Article  PubMed  CAS  Google Scholar 

  • Harris JR, Adrian M, Petry F (2003) Structure of the Cryptosporidium parvum microneme: a metabolically and osmotically labile apicomplexan organelle. Micron 34:65–78

    Article  PubMed  Google Scholar 

  • Hines SA, Palmer GH, Brown WC, McElwain TF, Suarez CE, Vidotto O, Rice-Ficht AC (1995) Genetic and antigenic characterization of Babesia bovis merozoite spherical body protein Bb-1. Mol Biochem Parasitol 69:149–159

    Article  PubMed  CAS  Google Scholar 

  • Ishino T, Yano K, Chinzei Y, Yuda M (2004) Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. PLoS Biol 2:E4

    Article  PubMed  Google Scholar 

  • Jacobs L (1967) Toxoplasma and toxoplasmosis. Adv Parasitol 5:1–45

    Article  PubMed  CAS  Google Scholar 

  • Kadota K, Ishino T, Matsuyama T, Chinzei Y, Yuda M (2004) Essential role of membrane-attack protein in malarial transmission to mosquito host. Proc Natl Acad Sci USA 101:16310–16315

    Article  PubMed  CAS  Google Scholar 

  • Kafsack BF, Pena JD, Coppens I, Ravindran S, Boothroyd JC, Carruthers VB (2009) Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells. Science 323:530–533

    Article  PubMed  CAS  Google Scholar 

  • King CA (1981) Cell surface interaction of the protozoan Gregarina with concanavalin A beads – implications for models of gregarine gliding. Cell Biol Int Rep 5:297–305

    Article  PubMed  CAS  Google Scholar 

  • Lal K, Prieto JH, Bromley E, Sanderson SJ, Yates JR 3rd, Wastling JM, Tomley FM, Sinden RE (2009) Characterisation of Plasmodium invasive organelles; an ookinete microneme proteome. Proteomics 9:1142–1151

    Article  PubMed  CAS  Google Scholar 

  • Langer RC, Vinetz JM (2001) Plasmodium ookinete-secreted chitinase and parasite penetration of the mosquito peritrophic matrix. Trends Parasitol 17:269–272

    Article  PubMed  CAS  Google Scholar 

  • Leander BS, Kuvardina ON, Aleshin VV, Mylnikov AP, Keeling PJ (2003) Molecular phylogeny and surface morphology of Colpodella edax (Alveolata): insights into the phagotrophic ancestry of apicomplexans. J Eukaryot Microbiol 50:334–340

    Article  PubMed  Google Scholar 

  • Lebrun M, Michelin A, El Hajj H, Poncet J, Bradley PJ, Vial H, Dubremetz JF (2005) The rhoptry neck protein RON4 relocalizes at the moving junction during Toxoplasma gondii invasion. Cell Microbiol 7:1823–1833

    Article  PubMed  CAS  Google Scholar 

  • Lebrun M, Carruthers VB, Cesbron MF (2007) Toxoplasma secretory proteins and their roles in cell invasion and intracellular survival. In: Louis W, Kami K (eds) Toxoplasma gondii: the model Apicomplexan perspectives and methods. Academic, London, pp 265–316

    Google Scholar 

  • Leriche MA, Dubremetz JF (1990) Exocytosis of Toxoplasma gondii dense granules into the parasitophorous vacuole after host cell invasion. Parasitol Res 76:559–562

    Article  PubMed  CAS  Google Scholar 

  • Leriche MA, Dubremetz JF (1991) Characterization of the protein contents of rhoptries and dense granules of Toxoplasma gondii tachyzoites by subcellular fractionation and monoclonal antibodies. Mol Biochem Parasitol 45:249–259

    Article  PubMed  CAS  Google Scholar 

  • Lovett JL, Marchesini N, Moreno SN, Sibley LD (2002) Toxoplasma gondii microneme secretion involves intracellular Ca(2+) release from inositol 1,4,5-triphosphate (IP(3))/ryanodine-sensitive stores. J Biol Chem 277:25870–25876

    Article  PubMed  CAS  Google Scholar 

  • Ludvik J (1956) Vergleichende elektronoptische untersuchungen an Toxoplasma gondii und Sarcocystis tenella. Zentralbl Bakteriol Abt 166:60–65

    CAS  Google Scholar 

  • Lumb R, Smith K, O'Donoghue PJ, Lanser JA (1988) Ultrastructure of the attachment of Cryptosporidium sporozoites to tissue culture cells. Parasitol Res 74:531–536

    Article  PubMed  CAS  Google Scholar 

  • Marti M, Good RT, Rug M, Knuepfer E, Cowman AF (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306:1930–1933

    Article  PubMed  CAS  Google Scholar 

  • Mercier C, Adjogble KD, Daubener W, Delauw MF (2005) Dense granules: are they key organelles to help understand the parasitophorous vacuole of all apicomplexa parasites? Int J Parasitol 35:829–849

    Article  PubMed  Google Scholar 

  • Miller LH, Aikawa M, Johnson JG, Shiroishi T (1979) Interaction between cytochalasin B-treated malarial parasites and erythrocytes. Attachment and junction formation. J Exp Med 149:172–184

    Article  PubMed  CAS  Google Scholar 

  • Miller SA, Binder EM, Blackman MJ, Carruthers VB, Kim K (2001) A conserved subtilisin-like protein TgSUB1 in microneme organelles of Toxoplasma gondii. J Biol Chem 276:45341–45348

    Article  PubMed  CAS  Google Scholar 

  • Mordue DG, Desai N, Dustin M, Sibley LD (1999) Invasion by Toxoplasma gondii establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis of their membrane anchoring. J Exp Med 190:1783–1792

    Article  PubMed  CAS  Google Scholar 

  • Nichols BA, Chiappino ML, O'Connor GR (1983) Secretion from the rhoptries of Toxoplasma gondii during host-cell invasion. J Ultrastruct Res 83:85–98

    Article  PubMed  CAS  Google Scholar 

  • Ogino N, Yoneda C (1966) The fine structure and mode of division of Toxoplasma gondii. Arch Ophthalmol 75:218–227

    Article  PubMed  CAS  Google Scholar 

  • Opitz C, Soldati D (2002) ‘The glideosome’: a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Mol Microbiol 45:597–604

    Article  PubMed  CAS  Google Scholar 

  • Porchet E, Torpier G (1977) Etude du germe infectieux de Sarcocystis tenella et Toxoplasma gondii par la technique du cryodecapage. Z Parasitenkd 54:101–124

    Article  PubMed  CAS  Google Scholar 

  • Porchet-Hennere E, Torpier G (1983) Relations entre Toxoplasma et sa cellule-hote. Protistologica 19:357–370

    Google Scholar 

  • Reiss M, Viebig N, Brecht S, Fourmaux MN, Soete M, Di Cristina M, Dubremetz JF, Soldati D (2001) Identification and characterization of an escorter for two secretory adhesins in Toxoplasma gondii. J Cell Biol 152:563–578

    Article  PubMed  CAS  Google Scholar 

  • Robson KJ, Hall JR, Jennings MW, Harris TJ, Marsh K, Newbold CI, Tate VE, Weatherall DJ (1988) A highly conserved amino-acid sequence in thrombospondin, properdin and in proteins from sporozoites and blood stages of a human malaria parasite. Nature 335:79–82

    Article  PubMed  CAS  Google Scholar 

  • Roger N, Dubremetz JF, Delplace P, Fortier B, Tronchin G, Vernes A (1988) Characterization of a 225 kilodalton rhoptry protein of Plasmodium falciparum. Mol Biochem Parasitol 27:135–141

    Article  PubMed  CAS  Google Scholar 

  • Rogers WO, Malik A, Mellouk S, Nakamura K, Rogers MD, Szarfman A, Gordon DM, Nussler AK, Aikawa M, Hoffman SL (1992) Characterization of Plasmodium falciparum sporozoite surface protein 2. Proc Natl Acad Sci USA 89:9176–9180

    Article  PubMed  CAS  Google Scholar 

  • Saeij JP, Boyle JP, Coller S, Taylor S, Sibley LD, Brooke-Powell ET, Ajioka JW, Boothroyd JC (2006) Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science 314:1780–1783

    Article  PubMed  CAS  Google Scholar 

  • Saeij JP, Coller S, Boyle JP, Jerome ME, White MW, Boothroyd JC (2007) Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature 445:324–327

    Article  PubMed  CAS  Google Scholar 

  • Satir B (1977) Dibucaine-induced synchronous mucocyst secretion in Tetrahymena. Cell Biol Int Rep 1:69–73

    Article  PubMed  CAS  Google Scholar 

  • Satir B, Schooley C, Satir P (1973) Membrane fusion in a model system. Mucocyst secretion in Tetrahymena. J Cell Biol 56:153–176

    Article  PubMed  CAS  Google Scholar 

  • Scholtyseck E, Mehlhorn H (1970) Ultrastructural study of characteristic organelles (paired organelles, micronemes, micropores) of sporozoa and related organisms. Z Parasitenkd 34:97–127

    PubMed  CAS  Google Scholar 

  • Schrevel J (1968) L'ultrastructure de la région antérieure de la grégarine Sélénidium et son intérêt pour l'étude de la nutrition chez les Sporozoaires. J Microsc 7:391–410

    Google Scholar 

  • Senaud J (1967) Contribution à l'étude des Sarcosporidies et des Toxoplasmes (toxoplasmea). Protistologica 3:168–232

    Google Scholar 

  • Shaw MK, Roos DS, Tilney LG (1998) Acidic compartments and rhoptry formation in Toxoplasma gondii. Parasitology 117:435–443

    Article  PubMed  CAS  Google Scholar 

  • Sheiner L, Soldati-Favre D (2008) Protein trafficking inside Toxoplasma gondii. Traffic 9:636–646

    Article  PubMed  CAS  Google Scholar 

  • Stewart MJ, Schulman S, Vanderberg JP (1985) Rhoptry secretion of membranous whorls by Plasmodium berghei sporozoites. J Protozool 32:280–283

    PubMed  CAS  Google Scholar 

  • Sultan AA, Thathy V, Frevert U, Robson KJ, Crisanti A, Nussenzweig V, Nussenzweig RS, Menard R (1997) TRAP is necessary for gliding motility and infectivity of Plasmodium sporozoites. Cell 90:511–522

    Article  PubMed  CAS  Google Scholar 

  • Suss-Toby E, Zimmerberg J, Ward GE (1996) Toxoplasma invasion: the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore. Proc Natl Acad Sci U S A 93:8413–8418

    Article  PubMed  CAS  Google Scholar 

  • Taylor S, Barragan A, Su C, Fux B, Fentress SJ, Tang K, Beatty WL, El Hajj H, Jerome M, Behnke MS, White M, Wootton JC, Sibley LD (2006) A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii. Science 314:1776–1780

    Article  PubMed  CAS  Google Scholar 

  • Tomley FM, Soldati DS (2001) Mix and match modules: structure and function of microneme proteins in apicomplexan parasites. Trends Parasitol 17:81–88

    Article  PubMed  CAS  Google Scholar 

  • Vivier E (1968) L'organisation ultrastructurale corticale de la grégarine Lecudina pellucida; ses rapports avec l'alimentation et la locomotion. J Protozool 15:230–246

    Google Scholar 

  • Vivier E, Petitprez A (1972) Données ultrastructurales complémentaires, morphologiques et cytochimiques, sur Toxoplasma gondii. Protistologica 8:199–221

    Google Scholar 

  • Yeoh S, O'Donnell RA, Koussis K, Dluzewski AR, Ansell KH, Osborne SA, Hackett F, Withers-Martinez C, Mitchell GH, Bannister LH, Bryans JS, Kettleborough CA, Blackman MJ (2007) Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell 131:1072–1083

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean François Dubremetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dubremetz, J.F. (2010). Secretory Organelles in Apicomplexa. In: de Souza, W. (eds) Structures and Organelles in Pathogenic Protists. Microbiology Monographs, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12863-9_8

Download citation

Publish with us

Policies and ethics