Advertisement

The Flagellar Pocket of Trypanosomatids: A Critical Feature for Cell Morphogenesis and Pathogenicity

Chapter
  • 627 Downloads
Part of the Microbiology Monographs book series (MICROMONO, volume 17)

Abstract

Trypanosomatids possess a highly ordered array of sub-pellicular microtubules that restrict all vesicular traffic to the flagellar pocket (FP); a small invagination of the plasma membrane located at the base of the flagellum. Although the FP is not an adaptation to parasitism per se, it is without question a key pathogenicity feature that has enabled parasitic trypanosomatid species to exploit a diversity of host environments. In this chapter, we focus on the FP of the African trypanosome Trypanosoma brucei and consider recent advances in our understanding of the physical architecture of the FP and the dynamics of FP operation. We conclude with a brief discussion that the trypanosomatid FP represents an example of “extreme biology”, i.e. a normal but exaggerated example of the cell biology present at the flagellum base in proliferating flagellated eukaryotic cells.

Keywords

Life Cycle Stage Bloodstream Form Flagellar Pocket Procyclic Form African Trypanosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ackers JP, Dhir V et al (2005) A bioinformatic analysis of the RAB genes of Trypanosoma brucei. Mol Biochem Parasitol 141:89–97PubMedCrossRefGoogle Scholar
  2. Allen RD, Schroeder CC et al (1992) Endosomal system of Paramecium: coated pits to early endosomes. J Cell Sci 101:449–461PubMedGoogle Scholar
  3. Allen CL, Goulding D et al (2003) Clathrin-mediated endocytosis is essential in Trypanosoma brucei. Embo J 22:4991–5002PubMedCrossRefGoogle Scholar
  4. Atrih A, Richardson JM et al (2005) Trypanosoma brucei glycoproteins contain novel giant poly-N-acetyllactosamine carbohydrate chains. J Biol Chem 280:865–871PubMedCrossRefGoogle Scholar
  5. Balber AE (1990) The pellicle and the membrane of the flagellum, flagellar adhesion zone, and flagellar pocket: functionally discrete surface domains of the bloodstream form of African trypanosomes. Crit Rev Immunol 10:177–201PubMedGoogle Scholar
  6. Berriman M, Ghedin E et al (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422PubMedCrossRefGoogle Scholar
  7. Bitter W, Gerrits H et al (1998) The role of transferrin-receptor variation in the host range of Trypanosoma brucei. Nature 391:499–502PubMedCrossRefGoogle Scholar
  8. Bonhivers M, Nowacki S et al (2008) Biogenesis of the trypanosome endo-exocytotic organelle is cytoskeleton mediated. PLoS Biol 6:e105PubMedCrossRefGoogle Scholar
  9. Branche C, Kohl L et al (2006) Conserved and specific functions of axoneme components in trypanosome motility. J Cell Sci 119:3443–3455PubMedCrossRefGoogle Scholar
  10. Brickman MJ, Balber AE (1990) Trypanosoma brucei rhodesiense bloodstream forms: surface ricin-binding glycoproteins are localized exclusively in the flagellar pocket and the flagellar adhesion zone. J Protozool 37:219–224PubMedGoogle Scholar
  11. Brickman MJ, Cook JM et al (1995) Low temperature reversibly inhibits transport from tubular endosomes to a perinuclear, acidic compartment in African trypanosomes. J Cell Sci 108:3611–3621PubMedGoogle Scholar
  12. Broadhead R, Dawe HR et al (2006) Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440:224–227PubMedCrossRefGoogle Scholar
  13. Bruce D (1911) The Morphology of Trypanosoma gambiense (Dutton). Proc R Soc Lond Ser B 84:327–332CrossRefGoogle Scholar
  14. Carrington M, Boothroyd J (1996) Implications of conserved structural motifs in disparate trypanosome surface proteins. Mol Biochem Parasitol 81:119–126PubMedCrossRefGoogle Scholar
  15. Chanez AL, Hehl AB et al (2006) Ablation of the single dynamin of T. brucei blocks mitochondrial fission and endocytosis and leads to a precise cytokinesis arrest. J Cell Sci 119:2968–2974PubMedCrossRefGoogle Scholar
  16. Coppens I, Opperdoes FR et al (1987) Receptor-mediated endocytosis in the bloodstream form of Trypanosoma brucei. J Protozool 34:465–473PubMedGoogle Scholar
  17. Davidge JA, Chambers E et al (2006) Trypanosome IFT mutants provide insight into the motor location for mobility of the flagella connector and flagellar membrane formation. J Cell Sci 119:3935–3943PubMedCrossRefGoogle Scholar
  18. De Greef C, Imberechts H et al (1989) A gene expressed only in serum-resistant variants of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol 36:169–176PubMedCrossRefGoogle Scholar
  19. De Greef C, Chimfwembe E et al (1992) Only the serum-resistant bloodstream forms of Trypanosoma brucei rhodesiense express the serum resistance associated (SRA) protein. Ann Soc Belg Med Trop 72:13–21PubMedGoogle Scholar
  20. Donelson JE (2003) Antigenic variation and the African trypanosome genome. Acta Trop 85:391–404PubMedCrossRefGoogle Scholar
  21. Engstler M, Weise F et al (2005) The membrane-bound histidine acid phosphatase TbMBAP1 is essential for endocytosis and membrane recycling in Trypanosoma brucei. J Cell Sci 118:2105–2118PubMedCrossRefGoogle Scholar
  22. Engstler M, Pfohl T et al (2007) Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131:505–515PubMedCrossRefGoogle Scholar
  23. Ferguson MA (1999) The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 112:2799–2809PubMedGoogle Scholar
  24. Field MC, Carrington M (2004) Intracellular membrane transport systems in Trypanosoma brucei. Traffic 5:905–913PubMedCrossRefGoogle Scholar
  25. Field MC, Carrington M (2009) The trypanosome flagellar pocket. Nat Rev Microbiol 7:775–786PubMedCrossRefGoogle Scholar
  26. Gadelha C, Rothery S et al (2009) Membrane domains and boundaries: cytoskeletal influences on the flagellar pocket of bloodstream trypanosomes. Proc Natl Acad Sci USA 106:17425–17430PubMedCrossRefGoogle Scholar
  27. Garcia-Salcedo JA, Perez-Morga D et al (2004) A differential role for actin during the life cycle of Trypanosoma brucei. EMBO J 23:780–789PubMedCrossRefGoogle Scholar
  28. Gerrits H, Mussmann R et al (2002) The physiological significance of transferrin receptor variations in Trypanosoma brucei. Mol Biochem Parasitol 119:237–247PubMedCrossRefGoogle Scholar
  29. Ginger ML, Portman N et al (2008) Swimming with protists: perception, motility and flagellum assembly. Nat Rev Microbiol 6:838–850PubMedCrossRefGoogle Scholar
  30. Gull K (1999) The cytoskeleton of trypanosomatid parasites. Annu Rev Microbiol 53:629–655PubMedCrossRefGoogle Scholar
  31. Gull K (2009) The parasite point of view: Insights and questions on the cell biology of Trypanosoma and Leishmania parasite-phagocyte interactions. In: Russell D, Gordon S (eds) Phagocyte-pathogen interactions: macrophages and the host response to infection. ASM Press, Washington, pp 453–462Google Scholar
  32. Hall B, Allen CL et al (2004) Both of the Rab5 subfamily small GTPases of Trypanosoma brucei are essential and required for endocytosis. Mol Biochem Parasitol 138:67–77PubMedCrossRefGoogle Scholar
  33. Hall BS, Smith E et al (2005) Developmental variation in Rab11-dependent trafficking in Trypanosoma brucei. Eukaryot Cell 4:971–980PubMedCrossRefGoogle Scholar
  34. Harrington J, Howell S et al (2009) Membrane permeabilization by trypanosome lytic factor, a cytolytic human high-density lipoprotein. J Biol Chem 284:13505–13512PubMedCrossRefGoogle Scholar
  35. Hertz-Fowler C, Ersfeld K et al (2001) CAP5.5, a life-cycle-regulated, cytoskeleton-associated protein is a member of a novel family of calpain-related proteins in Trypanosoma brucei. Mol Biochem Parasitol 116:25–34PubMedCrossRefGoogle Scholar
  36. Hoare C, Wallace F (1966) Developmental stages of trypanosomatid flagellates: a new terminology. Nature 212:1385–1386CrossRefGoogle Scholar
  37. Horn D (2004) The molecular control of antigenic variation in Trypanosoma brucei. Curr Mol Med 4:563–576PubMedCrossRefGoogle Scholar
  38. Hung CH, Qiao X et al (2004) Clathrin-dependent targeting of receptors to the flagellar pocket of procyclic-form Trypanosoma brucei. Eukaryot Cell 3:1004–1014PubMedCrossRefGoogle Scholar
  39. Ilg T (2000) Proteophosphoglycans of Leishmania. Parasitol Today 16:489–497PubMedCrossRefGoogle Scholar
  40. Jeffries TR, Morgan GW et al (2001) A developmentally regulated rab11 homologue in Trypanosoma brucei is involved in recycling processes. J Cell Sci 114:2617–2626PubMedGoogle Scholar
  41. Lacomble S, Vaughan S et al (2009) Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography. J Cell Sci 122:1081–1090PubMedCrossRefGoogle Scholar
  42. LaCount DJ, Barrett B et al (2002) Trypanosoma brucei FLA1 is required for flagellum attachment and cytokinesis. J Biol Chem 277:17580–17588PubMedCrossRefGoogle Scholar
  43. Lee MG, Bihain BE et al (1990) Characterization of a cDNA encoding a cysteine-rich cell surface protein located in the flagellar pocket of the protozoan Trypanosoma brucei. Mol Cell Biol 10:4506–4517PubMedGoogle Scholar
  44. Ligtenberg MJ, Bitter W et al (1994) Reconstitution of a surface transferrin binding complex in insect form Trypanosoma brucei. EMBO J 13:2565–2573PubMedGoogle Scholar
  45. Linder JC, Staehelin LA (1977) Plasma membrane specializations in a trypanosomatid flagellate. J Ultrastruct Res 60:246–262PubMedCrossRefGoogle Scholar
  46. Liu J, Qiao X et al (2000) Receptor-mediated endocytosis in the procyclic form of Trypanosoma brucei. J Biol Chem 275:12032–12040PubMedCrossRefGoogle Scholar
  47. Maier A, Steverding D (1996) Low affinity of Trypanosoma brucei transferrin receptor to apotransferrin at pH 5 explains the fate of the ligand during endocytosis. FEBS Lett 396:87–89PubMedCrossRefGoogle Scholar
  48. McLintock LM, Turner CM et al (1993) Comparison of the effects of immune killing mechanisms on Trypanosoma brucei parasites of slender and stumpy morphology. Parasite Immunol 15:475–480PubMedCrossRefGoogle Scholar
  49. Moreira-Leite FF, Sherwin T et al (2001) A trypanosome structure involved in transmitting cytoplasmic information during cell division. Science 294:610–612PubMedCrossRefGoogle Scholar
  50. Morgan GW, Allen CL et al (2001) Developmental and morphological regulation of clathrin-mediated endocytosis in Trypanosoma brucei. J Cell Sci 114:2605–2615PubMedGoogle Scholar
  51. Morgan GW, Hall BS et al (2002a) The kinetoplastida endocytic apparatus. Part I: a dynamic system for nutrition and evasion of host defences. Trends Parasitol 18:491–496PubMedCrossRefGoogle Scholar
  52. Morgan GW, Hall BS et al (2002b) The endocytic apparatus of the kinetoplastida. Part II: machinery and components of the system. Trends Parasitol 18:540–546PubMedCrossRefGoogle Scholar
  53. Morgan GW, Goulding D et al (2004) The single dynamin-like protein of Trypanosoma brucei regulates mitochondrial division and is not required for endocytosis. J Biol Chem 279:10692–10701PubMedCrossRefGoogle Scholar
  54. Morriswood B, He CY et al (2009) The bilobe structure of Trypanosoma brucei contains a MORN-repeat protein. Mol Biochem Parasitol 167:95–103PubMedCrossRefGoogle Scholar
  55. Mussmann R, Janssen H et al (2003) The expression level determines the surface distribution of the transferrin receptor in Trypanosoma brucei. Mol Microbiol 47:23–35PubMedCrossRefGoogle Scholar
  56. Natesan SK, Peacock L et al (2007) Activation of endocytosis as an adaptation to the mammalian host by trypanosomes. Eukaryot Cell 6:2029–2037PubMedCrossRefGoogle Scholar
  57. Navarro M, Penate X et al (2007) Nuclear architecture underlying gene expression in Trypanosoma brucei. Trends Microbiol 15:263–270PubMedCrossRefGoogle Scholar
  58. Nolan DP, Geuskens M et al (1999) N-linked glycans containing linear poly-N-acetyllactosamine as sorting signals in endocytosis in Trypanosoma brucei. Curr Biol 9:1169–1172PubMedCrossRefGoogle Scholar
  59. O'Beirne C, Lowry C et al (1998) Both IgM and IgG anti-VSG antibodies initiate a cycle of aggregation-disaggregation of bloodstream forms of Trypanosoma brucei without damage to the parasite. Mol Biochem Parasitol 91:165–193PubMedCrossRefGoogle Scholar
  60. Oli MW, Cotlin LF et al (2006) Serum resistance-associated protein blocks lysosomal targeting of trypanosome lytic factor in Trypanosoma brucei. Eukaryot Cell 5:132–139PubMedCrossRefGoogle Scholar
  61. Overath P, Engstler M (2004) Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Mol Microbiol 53:735–744PubMedCrossRefGoogle Scholar
  62. Overath P, Stierhof YD et al (1997) Endocytosis and secretion in trypanosomatid parasites – Tumultuous traffic in a pocket. Trends Cell Biol 7:27–33PubMedCrossRefGoogle Scholar
  63. Pal A, Hall BS et al (2003) Rab5 and Rab11 mediate transferrin and anti-variant surface glycoprotein antibody recycling in Trypanosoma brucei. Biochem J 374:443–451PubMedCrossRefGoogle Scholar
  64. Pays E (2005) Regulation of antigen gene expression in Trypanosoma brucei. Trends Parasitol 21:517–520PubMedCrossRefGoogle Scholar
  65. Pays E, Vanhollebeke B (2009) Human innate immunity against African trypanosomes. Curr Opin Immunol 21:493–498PubMedCrossRefGoogle Scholar
  66. Pedersen LB, Rosenbaum JL (2008) Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol 85:23–61PubMedCrossRefGoogle Scholar
  67. Perez-Morga D, Vanhollebeke B et al (2005) Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science 309:469–472PubMedCrossRefGoogle Scholar
  68. Plattner H, Kissmehl R (2003) Molecular aspects of membrane trafficking in Paramecium. Int Rev Cytol 232:185–216PubMedCrossRefGoogle Scholar
  69. Qiao X, Chuang BF et al (2006) Sorting signals required for trafficking of the cysteine-rich acidic repetitive transmembrane protein in Trypanosoma brucei. Eukaryot Cell 5:1229–1242PubMedCrossRefGoogle Scholar
  70. Radwanska M, Chamekh M et al (2002) The serum resistance-associated gene as a diagnostic tool for the detection of Trypanosoma brucei rhodesiense. Am J Trop Med Hyg 67:684–690PubMedGoogle Scholar
  71. Robinson DR, Gull K (1991) Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle. Nature 352:731–733PubMedCrossRefGoogle Scholar
  72. Rogalski AA, Bouck GB (1982) Flagellar surface antigens in Euglena: immunological evidence for an external glycoprotein pool and its transfer to the regenerating flagellum. J Cell Biol 93:758–766PubMedCrossRefGoogle Scholar
  73. Rogers ME, Ilg T et al (2004) Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature 430:463–467PubMedCrossRefGoogle Scholar
  74. Rogers M, Kropf P et al (2009) Proteophosophoglycans regurgitated by Leishmania-infected sand flies target the L-arginine metabolism of host macrophages to promote parasite survival. PLoS Pathog 5:e1000555PubMedCrossRefGoogle Scholar
  75. Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3:813–825PubMedCrossRefGoogle Scholar
  76. Salmon D, Geuskens M et al (1994) A novel heterodimeric transferrin receptor encoded by a pair of VSG expression site-associated genes in T. brucei. Cell 78:75–86PubMedCrossRefGoogle Scholar
  77. Salmon D, Paturiaux-Hanocq F et al (2005) Trypanosoma brucei: growth differences in different mammalian sera are not due to the species-specificity of transferrin. Exp Parasitol 109:188–194PubMedCrossRefGoogle Scholar
  78. Schwartz KJ, Peck RF et al (2005) GPI valence and the fate of secretory membrane proteins in African trypanosomes. J Cell Sci 118:5499–5511PubMedCrossRefGoogle Scholar
  79. Shiflett A, Bishop J et al (2005) Human high density lipoproteins are platforms for the assembly of multi-component innate immune complexes. J Biol Chem 280:32578–32585PubMedCrossRefGoogle Scholar
  80. Stephan A, Vaughan S et al (2007) An essential quality control mechanism at the eukaryotic basal body prior to intraflagellar transport. Traffic 8:1323–1330PubMedCrossRefGoogle Scholar
  81. Stierhof YD, Ilg T et al (1994) Characterization of polymer release from the flagellar pocket of Leishmania mexicana promastigotes. J Cell Biol 125:321–331PubMedCrossRefGoogle Scholar
  82. Stockdale C, Swiderski MR et al (2008) Antigenic variation in Trypanosoma brucei: joining the DOTs. PLoS Biol 6:e185PubMedCrossRefGoogle Scholar
  83. Taylor JE, Rudenko G (2006) Switching trypanosome coats: what's in the wardrobe? Trends Genet 22:614–620PubMedCrossRefGoogle Scholar
  84. Tyler KM, Fridberg A et al (2009) Flagellar membrane localization via association with lipid rafts. J Cell Sci 122:859–866PubMedCrossRefGoogle Scholar
  85. van Meirvenne N, Maginus E et al (1976) The effect of normal human serum on trypanosomes of distinct antigenic type (ETat 1 to 12) isolated from a strain of Trypanosoma brucei rhodesiense. Ann Soc Belg Med Trop 56:55–63PubMedGoogle Scholar
  86. Vanhollebeke B, Lecordier L et al (2007a) Human serum lyses Trypanosoma brucei by triggering uncontrolled swelling of the parasite lysosome. J Eukaryot Microbiol 54:448–451PubMedCrossRefGoogle Scholar
  87. Vanhollebeke B, Nielsen MJ et al (2007b) Distinct roles of haptoglobin-related protein and apolipoprotein L-I in trypanolysis by human serum. Proc Natl Acad Sci USA 104:4118–4123PubMedCrossRefGoogle Scholar
  88. Vanhollebeke B, De Muylder G et al (2008) A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science 320:677–681PubMedCrossRefGoogle Scholar
  89. Vickerman K (1973) The mode of attachment of Trypanosoma vivax in the proboscis of the tsetse fly Glossina fuscipes: an ultrastructural study of the epimastigote stage of the trypanosome. J Protozool 20:394–404PubMedGoogle Scholar
  90. Vickerman K, Tetley L (1990) Flagellar surfaces of parasitic protozoa and their role in attachment. In: Bloodgood R (ed) Ciliary and flagellar membranes. Plenum, New York, pp 267–304CrossRefGoogle Scholar
  91. Vieira OV, Gaus K et al (2006) FAPP2, cilium formation, and compartmentalization of the apical membrane in polarized Madin-Darby canine kidney (MDCK) cells. Proc Natl Acad Sci USA 103:18556–18561PubMedCrossRefGoogle Scholar
  92. Wickstead B, Gull K (2006) A “holistic” kinesin phylogeny reveals new kinesin families and predicts protein functions. Mol Biol Cell 17:1734–1743PubMedCrossRefGoogle Scholar
  93. Wickstead B, Gull K (2007) Dyneins across eukaryotes: a comparative genomic analysis. Traffic 8:1708–1721PubMedCrossRefGoogle Scholar
  94. Widener J, Nielsen M et al (2007) Hemoglobin is a co-factor of human trypanosome lytic factor. PLoS Pathog 3:1250–1261PubMedCrossRefGoogle Scholar
  95. Yang H, Russell DG et al (2000) Sequence requirements for trafficking of the CRAM transmembrane protein to the flagellar pocket of African trypanosomes. Mol Cell Biol 20:5149–5163PubMedCrossRefGoogle Scholar
  96. Yoshikawa H, Furuki J et al (1990) Freeze-fracture study of the bloodstream form of Trypanosoma brucei gambiense. J Protozool 37:27–32PubMedGoogle Scholar
  97. Zamze SE, Ashford DA et al (1991) Structural characterization of the asparagine-linked oligosaccharides from Trypanosoma brucei type II and type III variant surface glycoproteins. J Biol Chem 266:20244–20261PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Division of Biomedical and Life Sciences, School of Health and MedicineLancaster UniversityLancasterUK
  2. 2.Sir William Dunn School of PathologyUniversity of OxfordOxfordUK

Personalised recommendations