Flagellum Structure and Function in Trypanosomes

Part of the Microbiology Monographs book series (MICROMONO, volume 17)


Trypanosomes are flagellated protozoan parasites responsible for devastating diseases in human and cattle. Recently, they have emerged as new models to study cilia and flagella thanks to powerful reverse genetics approaches coupled to the full sequencing of the genome of several species. In this chapter, we describe the ultra-structural features of the Trypanosoma brucei flagellum, revealing evolutionarily conserved aspects of the axoneme or the basal body and specific elements such as the paraflagellar rod or the flagellum attachment zone. We update the numerous functions demonstrated for this organelle, keeping in mind that most data were obtained from cultured parasites. The next challenges will be the determination of the role of the flagellum in the complex T. brucei life cycle, transiting through tissues of the tsetse fly vector and swimming in the bloodstream of mammals.


  1. Absalon S, Kohl L, Branche C, Blisnick T, Toutirais G, Rusconi F, Cosson J, Bonhivers M, Robinson D, Bastin P (2007) Basal body positioning is controlled by flagellum formation in Trypanosoma brucei. PLoS ONE 2:e437PubMedCrossRefGoogle Scholar
  2. Absalon S, Blisnick T, Bonhivers M, Kohl L, Cayet N, Toutirais G, Buisson J, Robinson D, Bastin P (2008a) Flagellum elongation is required for correct structure, orientation and function of the flagellar pocket in Trypanosoma brucei. J Cell Sci 121:3704–3716PubMedCrossRefGoogle Scholar
  3. Absalon S, Blisnick T, Kohl L, Toutirais G, Dore G, Julkowska D, Tavenet A, Bastin P (2008b) Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol Biol Cell 19:929–944PubMedCrossRefGoogle Scholar
  4. Adhiambo C, Forney JD, Asai DJ, LeBowitz JH (2005) The two cytoplasmic dynein-2 isoforms in Leishmania mexicana perform separate functions. Mol Biochem Parasitol 143:216–225PubMedCrossRefGoogle Scholar
  5. Adhiambo C, Blisnick T, Toutirais G, Delannoy E, Bastin P (2009) A novel function for the atypical small G protein Rab-like 5 in the assembly of the trypanosome flagellum. J Cell Sci 122:834–841PubMedCrossRefGoogle Scholar
  6. Baron DM, Kabututu ZP, Hill KL (2007a) Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement. J Cell Sci 120:1513–1520PubMedCrossRefGoogle Scholar
  7. Baron DM, Ralston KS, Kabututu ZP, Hill KL (2007b) Functional genomics in Trypanosoma brucei identifies evolutionarily conserved components of motile flagella. J Cell Sci 120:478–491PubMedCrossRefGoogle Scholar
  8. Bastin P, Matthews KR, Gull K (1996) The paraflagellar rod of kinetoplastida: solved and unsolved questions. Parasitol Today 12:302–307PubMedCrossRefGoogle Scholar
  9. Bastin P, Sherwin T, Gull K (1998) Paraflagellar rod is vital for trypanosome motility. Nature 391:548PubMedCrossRefGoogle Scholar
  10. Bastin P, MacRae TH, Francis SB, Matthews KR, Gull K (1999a) Flagellar morphogenesis: protein targeting and assembly in the paraflagellar rod of trypanosomes. Mol Cell Biol 19:8191–8200PubMedGoogle Scholar
  11. Bastin P, Pullen TJ, Sherwin T, Gull K (1999b) Protein transport and flagellum assembly dynamics revealed by analysis of the paralysed trypanosome mutant snl-1. J Cell Sci 112:3769–3777PubMedGoogle Scholar
  12. Bates PA (2008) Leishmania sand fly interaction: progress and challenges. Curr Opin Microbiol 11:340–344PubMedCrossRefGoogle Scholar
  13. Bonhivers M, Landrein N, Decossas M, Robinson DR (2008a) A monoclonal antibody marker for the exclusion-zone filaments of Trypanosoma brucei. Parasit Vectors 1:21PubMedCrossRefGoogle Scholar
  14. Bonhivers M, Nowacki S, Landrein N, Robinson DR (2008b) Biogenesis of the trypanosome endo-exocytotic organelle is cytoskeleton mediated. PLoS Biol 6:e105PubMedCrossRefGoogle Scholar
  15. Branche C, Kohl L, Toutirais G, Buisson J, Cosson J, Bastin P (2006) Conserved and specific functions of axoneme components in trypanosome motility. J Cell Sci 119:3443–3455PubMedCrossRefGoogle Scholar
  16. Briggs LJ, McKean PG, Baines A, Moreira-Leite F, Davidge J, Vaughan S, Gull K (2004) The flagella connector of Trypanosoma brucei: an unusual mobile transmembrane junction. J Cell Sci 117:1641–1651PubMedCrossRefGoogle Scholar
  17. Broadhead R, Dawe HR, Farr H, Griffiths S, Hart SR, Portman N, Shaw MK, Ginger ML, Gaskell SJ, McKean PG, Gull K (2006) Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440:224–227PubMedCrossRefGoogle Scholar
  18. Brown JM, Hardin C, Gaertig J (1999) Rotokinesis, a novel phenomenon of cell locomotion-assisted cytokinesis in the ciliate Tetrahymena thermophila. Cell Biol Int 23:841–848PubMedCrossRefGoogle Scholar
  19. Cachon J, Cachon M, Cosson MP, Cosson J (1988) The paraflagellar rod: a structure in search of a function. Biol Cell 63:169–181CrossRefGoogle Scholar
  20. Cavalier-Smith T (1974) Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. J Cell Sci 16:529–556PubMedGoogle Scholar
  21. Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL (1998) Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141:993–1008PubMedCrossRefGoogle Scholar
  22. Cooper R, de Jesus AR, Cross GA (1993) Deletion of an immunodominant Trypanosoma cruzi surface glycoprotein disrupts flagellum-cell adhesion. J Cell Biol 122:149–156PubMedCrossRefGoogle Scholar
  23. Cross GA (1975) Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71:393–417PubMedCrossRefGoogle Scholar
  24. Davidge JA, Chambers E, Dickinson HA, Towers K, Ginger ML, McKean PG, Gull K (2006) Trypanosome IFT mutants provide insight into the motor location for mobility of the flagella connector and flagellar membrane formation. J Cell Sci 119:3935–3943PubMedCrossRefGoogle Scholar
  25. Dawe HR, Farr H, Portman N, Shaw MK, Gull K (2005) The Parkin co-regulated gene product, PACRG, is an evolutionarily conserved axonemal protein that functions in outer-doublet microtubule morphogenesis. J Cell Sci 118:5421–5430PubMedCrossRefGoogle Scholar
  26. Dawe HR, Shaw MK, Farr H, Gull K (2007) The hydrocephalus inducing gene product, Hydin, positions axonemal central pair microtubules. BMC Biol 5:33PubMedCrossRefGoogle Scholar
  27. Deane JA, Cole DG, Seeley ES, Diener DR, Rosenbaum JL (2001) Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr Biol 11:1586–1590PubMedCrossRefGoogle Scholar
  28. Deflorin J, Rudolf M, Seebeck T (1994) The major components of the paraflagellar rod of Trypanosoma brucei are two similar, but distinct proteins which are encoded by two different gene loci. J Biol Chem 269:28745–28751PubMedGoogle Scholar
  29. Dilbeck V, Berberof M, Van Cauwenberge A, Alexandre H, Pays E (1999) Characterization of a coiled coil protein present in the basal body of Trypanosoma brucei. J Cell Sci 112(Pt 24):4687–4694PubMedGoogle Scholar
  30. Engstler M, Thilo L, Weise F, Grunfelder CG, Schwarz H, Boshart M, Overath P (2004) Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei. J Cell Sci 117:1105–1115PubMedCrossRefGoogle Scholar
  31. Engstler M, Pfohl T, Herminghaus S, Boshart M, Wiegertjes G, Heddergott N, Overath P (2007) Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131:505–515PubMedCrossRefGoogle Scholar
  32. Farina M, Attias M, Souto-Padron T, De Souza W (1986) Further studies on the organization of the paraxial rod of Trypanosomatids. J Protozool 33:552–557Google Scholar
  33. Farr H, Gull K (2009) Functional studies of an evolutionarily conserved, cytochrome b5 domain protein reveal a specific role in axonemal organisation and the general phenomenon of post-division axonemal growth in trypanosomes. Cell Motil Cytoskeleton 66:24–35PubMedCrossRefGoogle Scholar
  34. Field MC, Natesan SK, Gabernet-Castello C, Koumandou VL (2007) Intracellular trafficking in the trypanosomatids. Traffic 8:629–639PubMedCrossRefGoogle Scholar
  35. Fliegauf M, Benzing T, Omran H (2007) When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 8:880–893PubMedCrossRefGoogle Scholar
  36. Gadelha C, Wickstead B, de Souza W, Gull K, Cunha-e-Silva N (2005) Cryptic paraflagellar rod in endosymbiont-containing kinetoplastid protozoa. Eukaryot Cell 4:516–525PubMedCrossRefGoogle Scholar
  37. Gadelha C, Wickstead B, Gull K (2007) Flagellar and ciliary beating in trypanosome motility. Cell Motil Cytoskeleton 64:629–643PubMedCrossRefGoogle Scholar
  38. Gallo JM, Precigout E, Schrevel J (1988) Subcellular sequestration of an antigenically unique beta-tubulin. Cell Motil Cytoskeleton 9:175–183PubMedCrossRefGoogle Scholar
  39. Grasse PP (1961) La reproduction par induction du blepharoplaste et du flagelle de Trypanosoma equiperdum. C R Acad Sci 252:3917–3921Google Scholar
  40. Hao L, Scholey JM (2009) Intraflagellar transport at a glance. J Cell Sci 122:889–892PubMedCrossRefGoogle Scholar
  41. He CY, Pypaert M, Warren G (2005) Golgi duplication in Trypanosoma brucei requires Centrin2. Science 310:1196–1198PubMedCrossRefGoogle Scholar
  42. Hill KL (2003) Biology and mechanism of trypanosome cell motility. Eukaryot Cell 2:200–208PubMedCrossRefGoogle Scholar
  43. Hutchings NR, Donelson JE, Hill KL (2002) Trypanin is a cytoskeletal linker protein and is required for cell motility in African trypanosomes. J Cell Biol 156:867–877PubMedCrossRefGoogle Scholar
  44. Julkowska D, Bastin P (2009) Tools for analysing intraflagellar transport in trypanosomes. Meth Cell Biol 93:59–80CrossRefGoogle Scholar
  45. Kohl L, Bastin P (2005) The flagellum of Trypanosomes. In: International review of cytology, Vol 244. Academic Press, New york, pp 227–285Google Scholar
  46. Kohl L, Gull K (1998) Molecular architecture of the trypanosome cytoskeleton. Mol Biochem Parasitol 93:1–9PubMedCrossRefGoogle Scholar
  47. Kohl L, Robinson D, Bastin P (2003) Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. EMBO J 22:5336–5346PubMedCrossRefGoogle Scholar
  48. Kollien AH, Schmidt J, Schaub GA (1998) Modes of association of Trypanosoma cruzi with the intestinal tract of the vector Triatoma infestans. Acta Trop 70:127–141PubMedCrossRefGoogle Scholar
  49. Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A 90:5519–5523PubMedCrossRefGoogle Scholar
  50. Lacomble S, Vaughan S, Gadelha C, Morphew MK, Shaw MK, McIntosh JR, Gull K (2009) Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography. J Cell Sci 122:1081–1090PubMedCrossRefGoogle Scholar
  51. LaCount DJ, Barrett B, Donelson JE (2002) Trypanosoma brucei FLA1 is required for flagellum attachment and cytokinesis. J Biol Chem 277:17580–17588PubMedCrossRefGoogle Scholar
  52. Li Z, Wang CC (2008) KMP-11, a basal body and flagellar protein, is required for cell division in Trypanosoma brucei. Eukaryot Cell 7:1941–1950PubMedCrossRefGoogle Scholar
  53. Liu B, Liu Y, Motyka SA, Agbo EE, Englund PT (2005) Fellowship of the rings: the replication of kinetoplast DNA. Trends Parasitol 21:363–369PubMedCrossRefGoogle Scholar
  54. Maga JA, LeBowitz JH (1999) Unravelling the kinetoplastid paraflagellar rod. Trends Cell Biol 9:409–413PubMedCrossRefGoogle Scholar
  55. Maga JA, Sherwin T, Francis S, Gull K, LeBowitz JH (1999) Genetic dissection of the Leishmania paraflagellar rod, a unique flagellar cytoskeleton structure. J Cell Sci 112:2753–2763PubMedGoogle Scholar
  56. Moreira-Leite FF, Sherwin T, Kohl L, Gull K (2001) A trypanosome structure involved in transmitting cytoplasmic information during cell division. Science 294:610–612PubMedCrossRefGoogle Scholar
  57. Morgan GW, Denny PW, Vaughan S, Goulding D, Jeffries TR, Smith DF, Gull K, Field MC (2005) An evolutionarily conserved coiled-coil protein implicated in polycystic kidney disease is involved in basal body duplication and flagellar biogenesis in Trypanosoma brucei. Mol Cell Biol 25:3774–3783PubMedCrossRefGoogle Scholar
  58. Natesan SK, Peacock L, Matthews K, Gibson W, Field MC (2007) Activation of endocytosis as an adaptation to the mammalian host by trypanosomes. Eukaryot Cell 6:2029–2037PubMedCrossRefGoogle Scholar
  59. Ngô HM, Bouck GB (1998) Heterogeneity and a coiled coil prediction of trypanosomatid-like flagellar rod proteins in Euglena. J Eukaryot Microbiol 45:323–333PubMedCrossRefGoogle Scholar
  60. Ogbadoyi EO, Robinson DR, Gull K (2003) A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol Biol Cell 14:1769–1779PubMedCrossRefGoogle Scholar
  61. Overath P, Engstler M (2004) Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Mol Microbiol 53:735–744PubMedCrossRefGoogle Scholar
  62. Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170:103–113PubMedCrossRefGoogle Scholar
  63. Peacock L, Ferris V, Bailey M, Gibson W (2007) Dynamics of infection and competition between two strains of Trypanosoma brucei in the tsetse fly observed using fluorescent markers. Kinetoplastid Biol Dis 6:4PubMedCrossRefGoogle Scholar
  64. Pedersen LB, Geimer S, Rosenbaum JL (2006) Dissecting the molecular mechanisms of intraflagellar transport in chlamydomonas. Curr Biol 16:450–459PubMedCrossRefGoogle Scholar
  65. Portman N, Lacomble S, Thomas B, McKean PG, Gull K (2009) Combining RNA interference mutants and comparative proteomics to identify protein components and dependences in a eukaryotic flagellum. J Biol Chem 284:5610–5619PubMedCrossRefGoogle Scholar
  66. Pullen TJ, Ginger ML, Gaskell SJ, Gull K (2004) Protein targeting of an unusual, evolutionarily conserved adenylate kinase to a eukaryotic flagellum. Mol Biol Cell 15:3257–3265PubMedCrossRefGoogle Scholar
  67. Ralston KS, Hill KL (2006) Trypanin, a component of the flagellar Dynein regulatory complex, is essential in bloodstream form African trypanosomes. PLoS Pathog 2:e101PubMedCrossRefGoogle Scholar
  68. Ralston KS, Lerner AG, Diener DR, Hill KL (2006) Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system. Eukaryot Cell 5:696–711PubMedCrossRefGoogle Scholar
  69. Ralston KS, Kabututu ZP, Melehani JH, Oberholzer M, Hill KL (2009) The Trypanosoma brucei flagellum: moving parasites in new directions. Annu Rev Microbiol 63:335–362PubMedCrossRefGoogle Scholar
  70. Ridgley E, Webster P, Patton C, Ruben L (2000) Calmodulin-binding properties of the paraflagellar rod complex from Trypanosoma brucei. Mol Biochem Parasitol 109:195–201PubMedCrossRefGoogle Scholar
  71. Robinson DR, Gull K (1991) Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle. Nature 352:731–733PubMedCrossRefGoogle Scholar
  72. Robinson DR, Sherwin T, Ploubidou A, Byard EH, Gull K (1995) Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J Cell Biol 128:1163–1172PubMedCrossRefGoogle Scholar
  73. Rodgers MJ, Albanesi JP, Phillips MA (2007) Phosphatidylinositol 4-kinase III-beta is required for Golgi maintenance and cytokinesis in Trypanosoma brucei. Eukaryot Cell 6:1108–1118PubMedCrossRefGoogle Scholar
  74. Rotureau B, Morales MA, Bastin P, Spath GF (2009) The flagellum-MAP kinase connection in Trypanosomatids: a key sensory role in parasite signaling and development? Cell Microbiol 11(5):710–718PubMedCrossRefGoogle Scholar
  75. Russell DG, Newsam RJ, Palmer GC, Gull K (1983) Structural and biochemical characterisation of the paraflagellar rod of Crithidia fasciculata. Eur J Cell Biol 30:137–143PubMedGoogle Scholar
  76. Santrich C, Moore L, Sherwin T, Bastin P, Brokaw C, Gull K, LeBowitz JH (1997) A motility function for the paraflagellar rod of Leishmania parasites revealed by PFR-2 gene knockouts. Mol Biochem Parasitol 90:95–109PubMedCrossRefGoogle Scholar
  77. Schlaeppi K, Deflorin J, Seebeck T (1989) The major component of the paraflagellar rod of Trypanosoma brucei is a helical protein that is encoded by two identical, tandemly linked genes. J Cell Biol 109:1695–1709PubMedCrossRefGoogle Scholar
  78. Scott V, Sherwin T, Gull K (1997) gamma-tubulin in trypanosomes: molecular characterisation and localisation to multiple and diverse microtubule organising centres. J Cell Sci 110(Pt 2):157–168PubMedGoogle Scholar
  79. Selvapandiyan A, Kumar P, Morris JC, Salisbury JL, Wang CC, Nakhasi HL (2007) Centrin1 is required for organelle segregation and cytokinesis in Trypanosoma brucei. Mol Biol Cell 18:3290–3301PubMedCrossRefGoogle Scholar
  80. Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ (2009) Motile cilia of human airway epithelia are chemosensory. Science 325(5944):1131–1134PubMedCrossRefGoogle Scholar
  81. Sharma R, Peacock L, Gluenz E, Gull K, Gibson W, Carrington M (2008) Asymmetric cell division as a route to reduction in cell length and change in cell morphology in trypanosomes. Protist 159:137–151PubMedCrossRefGoogle Scholar
  82. Sherwin T, Gull K (1989) The cell division cycle of Trypanosoma brucei: timing of event markers and cytoskeletal modulations. Philos Trans R Soc Lond B Biol Sci 323:573–588PubMedCrossRefGoogle Scholar
  83. Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313:629–633PubMedCrossRefGoogle Scholar
  84. Stephan A, Vaughan S, Shaw MK, Gull K, McKean PG (2007) An essential quality control mechanism at the eukaryotic basal body prior to intraflagellar transport. Traffic 8:1323–1330PubMedCrossRefGoogle Scholar
  85. Tetley L, Vickerman K (1985) Differentiation in Trypanosoma brucei: host-parasite cell junctions and their persistence during acquisition of the variable antigen coat. J Cell Sci 74:1–19PubMedGoogle Scholar
  86. Tuxworth RI, Cheetham JL, Machesky LM, Spiegelmann GB, Weeks G, Insall RH (1997) Dictyostelium RasG is required for normal motility and cytokinesis, but not growth. J Cell Biol 138:605–614PubMedCrossRefGoogle Scholar
  87. Vaughan S, Kohl L, Ngai I, Wheeler RJ, Gull K (2008) A repetitive protein essential for the flagellum attachment zone filament structure and function in Trypanosoma brucei. Protist 159:127–136PubMedCrossRefGoogle Scholar
  88. Vickerman K (1969) On the surface coat and flagellar adhesion in trypanosomes. J Cell Sci 5:163–193PubMedGoogle Scholar
  89. Vickerman K (1973) The mode of attachment of Trypanosoma vivax in the proboscis of the tsetse fly Glossina fuscipes: an ultrastructural study of the epimastigote stage of the trypanosome. J Protozool 20:394–404PubMedGoogle Scholar
  90. Vickerman K (1985) Developmental cycles and biology of pathogenic trypanosomes. Br Med Bull 41:105–114PubMedGoogle Scholar
  91. Vickerman K, Luckins AG (1969) Localization of variable antigens in the surface coat of Trypanosoma brucei using ferritin conjugated antibody. Nature 224:1125–1126PubMedCrossRefGoogle Scholar
  92. Zhao Z, Lindsay ME, Roy Chowdhury A, Robinson DR, Englund PT (2008) p166, a link between the trypanosome mitochondrial DNA and flagellum, mediates genome segregation. EMBO J 27:143–154PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Trypanosome Cell Biology UnitInstitut Pasteur & CNRSParisFrance

Personalised recommendations