Calcium Homeostasis and Acidocalcisomes in Trypanosoma cruzi

Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 17)

Abstract

Calcium ion (Ca2+) is an important second messenger in Trypanosoma cruzi and is essential for invasion of host cells by this parasite. A number of transporters and channels in the plasma membrane, endoplasmic reticulum, and mitochondria regulate cytosolic calcium concentration. Additionally, the T. cruzi genome contains a wide variety of signaling and regulatory proteins that bind calcium as well as many putative calcium-binding proteins that await further characterization. In T. cruzi, acidic organelles known as acidocalcisomes are the primary reservoir of intracellular calcium and mediate polyphosphate metabolism, osmoregulation, and calcium and pH homeostasis.

Abbreviations

AQP

Aquaporin

cADPR

Cyclic ADP ribose

Ca2+

Calcium ion

[Ca2+]i

Cytosolic Ca2+ concentration

CaM

Calmodulin

CaMK

Ca2+/calmodulin dependent kinase

CICR

Calcium induced calcium release

Cn

Calcineurin

FCaBP

Flagellar calcium binding protein

InsP3

Inositol 1,4,5-trisphosphate

InsP3R

InsP3 receptor

NAADP

Nicotinic acid adenine dinucleotide phosphate

PIP2

Phosphatidylinositol 4,5-bisphosphate

PI-PLC

Phosphatidylinositol phospholipase C

PMCA

Plasma membrane Ca2+-ATPase

poly P

Polyphosphate

RyR

Ryanodine receptor

SERCA

Sarcoplasmic-endoplasmic reticulum Ca2+-ATPase

V-H+-ATPase

Vacuolar proton ATPase

V-H+-PPase

Vacuolar proton pyrophosphatase

VTC

Vacuolar transporter chaperone

References

  1. Araya JE, Cornejo A, Orrego PR, Cordero EM, Cortez M, Olivares H, Neira I, Sagua H, da Silveira JF, Yoshida N, Gonzalez J (2008) Calcineurin B of the human protozoan parasite Trypanosoma cruzi is involved in cell invasion. Microbes Infect 10:892–900PubMedCrossRefGoogle Scholar
  2. Benaim G, Losada S, Gadelha FR, Docampo R (1991) A calmodulin-activated (Ca2+-Mg2+)-ATPase is involved in Ca2+ transport by plasma membrane vesicles from Trypanosoma cruzi. Biochem J 280:715–720PubMedGoogle Scholar
  3. Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 85:7972–7976PubMedCrossRefGoogle Scholar
  4. Cahalan MD (2009) STIMulating store-operated Ca2+ entry. Nat Cell Biol 11:669–677PubMedCrossRefGoogle Scholar
  5. Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433PubMedCrossRefGoogle Scholar
  6. Carafoli E, Brini M (2000) Calcium pumps: structural basis for and mechanism of calcium transmembrane transport. Curr Opin Chem Biol 4:152–161PubMedCrossRefGoogle Scholar
  7. Chung SH, Swindle J (1990) Linkage of the calmodulin and ubiquitin loci in Trypanosoma cruzi. Nucleic Acids Res 18:4561–4569PubMedCrossRefGoogle Scholar
  8. Conte I, Labriola C, Cazzulo JJ, Docampo R, Parodi AJ (2003) The interplay between folding-facilitating mechanisms in Trypanosoma cruzi endoplasmic reticulum. Mol Biol Cell 14:3529–3540PubMedCrossRefGoogle Scholar
  9. Correa AF, Andrade LR, Soares MJ (2002) Elemental composition of acidocalcisomes of Trypanosoma cruzi bloodstream trypomastigote forms. Parasitol Res 88:875–880PubMedCrossRefGoogle Scholar
  10. D'Angelo MA, Montagna AE, Sanguineti S, Torres HN, Flawia MM (2002) A novel calcium-stimulated adenylyl cyclase from Trypanosoma cruzi, which interacts with the structural flagellar protein paraflagellar rod. J Biol Chem 277:35025–35034PubMedCrossRefGoogle Scholar
  11. Docampo R, Moreno SN (2008) The acidocalcisome as a target for chemotherapeutic agents in protozoan parasites. Curr Pharm Des 14:882–888PubMedCrossRefGoogle Scholar
  12. Docampo R, Pignataro OP (1991) The inositol phosphate/diacylglycerol signalling pathway in Trypanosoma cruzi. Biochem J 275:407–411PubMedGoogle Scholar
  13. Docampo R, Vercesi AE (1989a) Ca2+ transport by coupled Trypanosoma cruzi mitochondria in situ. J Biol Chem 264:108–111PubMedGoogle Scholar
  14. Docampo R, Vercesi AE (1989b) Characteristics of Ca2+ transport by Trypanosoma cruzi mitochondria in situ. Arch Biochem Biophys 272:122–129PubMedCrossRefGoogle Scholar
  15. Docampo R, Moreno SN, Vercesi AE (1993) Effect of thapsigargin on calcium homeostasis in Trypanosoma cruzi trypomastigotes and epimastigotes. Mol Biochem Parasitol 59:305–313PubMedCrossRefGoogle Scholar
  16. Docampo R, Scott DA, Vercesi AE, Moreno SN (1995) Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. Biochem J 310:1005–1012PubMedGoogle Scholar
  17. Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SN (2005) Acidocalcisomes – conserved from bacteria to man. Nat Rev Microbiol 3:251–261PubMedCrossRefGoogle Scholar
  18. Dvorak JA, Engel JC, Leapman RD, Swyt CR, Pella PA (1988) Trypanosoma cruzi: elemental composition heterogeneity of cloned stocks. Mol Biochem Parasitol 31:19–26PubMedCrossRefGoogle Scholar
  19. Engman DM, Krause KH, Blumin JH, Kim KS, Kirchhoff LV, Donelson JE (1989) A novel flagellar Ca2+-binding protein in trypanosomes. J Biol Chem 264:18627–18631PubMedGoogle Scholar
  20. Ersfeld K, Barraclough H, Gull K (2005) Evolutionary relationships and protein domain architecture in an expanded calpain superfamily in kinetoplastid parasites. J Mol Evol 61:742–757PubMedCrossRefGoogle Scholar
  21. Fang J, Rohloff P, Miranda K, Docampo R (2007) Ablation of a small transmembrane protein of Trypanosoma brucei (TbVTC1) involved in the synthesis of polyphosphate alters acidocalcisome biogenesis and function, and leads to a cytokinesis defect. Biochem J 407:161–170PubMedCrossRefGoogle Scholar
  22. Ferella M, Nilsson D, Darban H, Rodrigues C, Bontempi EJ, Docampo R, Andersson B (2008) Proteomics in Trypanosoma cruzi–localization of novel proteins to various organelles. Proteomics 8:2735–2749PubMedCrossRefGoogle Scholar
  23. Fiskum G, Craig SW, Decker GL, Lehninger AL (1980) The cytoskeleton of digitonin-treated rat hepatocytes. Proc Natl Acad Sci USA 77:3430–3434PubMedCrossRefGoogle Scholar
  24. Furuya T, Kashuba C, Docampo R, Moreno SN (2000) A novel phosphatidylinositol-phospholipase C of Trypanosoma cruzi that is lipid modified and activated during trypomastigote to amastigote differentiation. J Biol Chem 275:6428–6438PubMedCrossRefGoogle Scholar
  25. Furuya T, Okura M, Ruiz FA, Scott DA, Docampo R (2001) TcSCA complements yeast mutants defective in Ca2+ pumps and encodes a Ca2+-ATPase that localizes to the endoplasmic reticulum of Trypanosoma cruzi. J Biol Chem 276:32437–32445PubMedCrossRefGoogle Scholar
  26. Godsel LM, Engman DM (1999) Flagellar protein localization mediated by a calcium-myristoyl/palmitoyl switch mechanism. EMBO J 18:2057–2065PubMedCrossRefGoogle Scholar
  27. Gomez ML, Erijman L, Arauzo S, Torres HN, Tellez-Iñón MT (1989) Protein kinase C in Trypanosoma cruzi epimastigote forms: partial purification and characterization. Mol Biochem Parasitol 36:101–108PubMedCrossRefGoogle Scholar
  28. Gomez ML, Ochatt CM, Kazanietz MG, Torres HN, Tellez-Iñón MT (1999) Biochemical and immunological studies of protein kinase C from Trypanosoma cruzi. Int J Parasitol 29:981–989PubMedCrossRefGoogle Scholar
  29. Gonzalez A, Lerner TJ, Huecas M, Sosa-Pineda B, Nogueira N, Lizardi PM (1985) Apparent generation of a segmented mRNA from two separate tandem gene families in Trypanosoma cruzi. Nucleic Acids Res 13:5789–5804PubMedCrossRefGoogle Scholar
  30. Green KN, LaFerla FM (2008) Linking calcium to Abeta and Alzheimer's disease. Neuron 59:190–194PubMedCrossRefGoogle Scholar
  31. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMedGoogle Scholar
  32. Hass MR, Sato C, Kopan R, Zhao G (2009) Presenilin: RIP and beyond. Semin Cell Dev Biol 20:201–210PubMedCrossRefGoogle Scholar
  33. Hill JE, Scott DA, Luo S, Docampo R (2000) Cloning and functional expression of a gene encoding a vacuolar-type proton-translocating pyrophosphatase from Trypanosoma cruzi. Biochem J 351:281–288PubMedCrossRefGoogle Scholar
  34. Irvine RF (1986) Calcium transients: mobilization of intracellular Ca2+. Br Med Bull 42:369–374PubMedGoogle Scholar
  35. Labriola C, Cazzulo JJ, Parodi A (1999) Trypanosoma cruzi calreticulin is a lectin that binds monoglucosylated oligosaccharides but not protein moieties of glycoproteins. Mol Biol Cell 10:1381–1394PubMedGoogle Scholar
  36. Ladenburger EM, Korn I, Kasielke N, Wassmer T, Plattner H (2006) An Ins(1, 4, 5)P3 receptor in Paramecium is associated with the osmoregulatory system. J Cell Sci 119:3705–3717PubMedCrossRefGoogle Scholar
  37. Ladenburger EM, Sehring IM, Korn I, Plattner H (2009) Novel types of Ca2+ release channels participate in the secretory cycle of Paramecium cells. Mol Cell Biol 29:3605–3622PubMedCrossRefGoogle Scholar
  38. Lammel EM, Barbieri MA, Wilkowsky SE, Bertini F, Isola EL (1996) Trypanosoma cruzi: involvement of intracellular calcium in multiplication and differentiation. Exp Parasitol 83:240–249PubMedCrossRefGoogle Scholar
  39. Lu HG, Zhong L, de Souza W, Benchimol M, Moreno S, Docampo R (1998) Ca2+ content and expression of an acidocalcisomal calcium pump are elevated in intracellular forms of Trypanosoma cruzi. Mol Cell Biol 18:2309–2323PubMedGoogle Scholar
  40. Luo S, Rohloff P, Cox J, Uyemura SA, Docampo R (2004) Trypanosoma brucei plasma membrane-type Ca2+-ATPase 1 (TbPMC1) and 2 (TbPMC2) genes encode functional Ca2+-ATPases localized to the acidocalcisomes and plasma membrane, and essential for Ca2+ homeostasis and growth. J Biol Chem 279:14427–14439PubMedCrossRefGoogle Scholar
  41. Miranda K, Benchimol M, Docampo R, de Souza W (2000) The fine structure of acidocalcisomes in Trypanosoma cruzi. Parasitol Res 86:373–384PubMedCrossRefGoogle Scholar
  42. Montalvetti A, Rohloff P, Docampo R (2004) A functional aquaporin co-localizes with the vacuolar proton pyrophosphatase to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi. J Biol Chem 279:38673–38682PubMedCrossRefGoogle Scholar
  43. Moreno SN, Docampo R (2009) The role of acidocalcisomes in parasitic protists. J Eukaryot Microbiol 56:208–213PubMedCrossRefGoogle Scholar
  44. Moreno SN, Vercesi AE, Pignataro OP, Docampo R (1992) Calcium homeostasis in Trypanosoma cruzi amastigotes: presence of inositol phosphates and lack of an inositol 1, 4, 5-trisphosphate-sensitive calcium pool. Mol Biochem Parasitol 52:251–261PubMedCrossRefGoogle Scholar
  45. Moreno SN, Silva J, Vercesi AE, Docampo R (1994) Cytosolic-free calcium elevation in Trypanosoma cruzi is required for cell invasion. J Exp Med 180:1535–1540PubMedCrossRefGoogle Scholar
  46. Moreno B, Urbina JA, Oldfield E, Bailey BN, Rodrigues CO, Docampo R (2000) 31P NMR spectroscopy of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major Evidence for high levels of condensed inorganic phosphates. J Biol Chem 275:28356–28362PubMedCrossRefGoogle Scholar
  47. Moreno B, Rodrigues CO, Bailey BN, Urbina JA, Moreno SN, Docampo R, Oldfield E (2002) Magic-angle spinning 31P NMR spectroscopy of condensed phosphates in parasitic protozoa: visualizing the invisible. FEBS Lett 523:207–212PubMedCrossRefGoogle Scholar
  48. Moreno VR, Aguero F, Tekiel V, Sanchez DO (2007) The Calcineurin A homologue from Trypanosoma cruzi lacks two important regulatory domains. Acta Trop 101:80–89PubMedCrossRefGoogle Scholar
  49. Nicholls DG, Snelling R, Rial E (1984) Proton and calcium circuits across the mitochondrial inner membrane. Biochem Soc Trans 12:388–390PubMedGoogle Scholar
  50. Ogueta SB, Solari A, Tellez-Iñón MT (1994) Trypanosoma cruzi epimastigote forms possess a Ca2+-calmodulin dependent protein kinase. FEBS Lett 337:293–297PubMedCrossRefGoogle Scholar
  51. Ogueta S, Intosh GM, Tellez-Iñón MT (1996) Regulation of Ca2+/calmodulin-dependent protein kinase from Trypanosoma cruzi. Mol Biochem Parasitol 78:171–183PubMedCrossRefGoogle Scholar
  52. Ogueta SB, Macintosh GC, Tellez-Iñón MT (1998) Stage-specific substrate phosphorylation by a Ca2+/calmodulin-dependent protein kinase in Trypanosoma cruzi. J Eukaryot Microbiol 45:392–396PubMedCrossRefGoogle Scholar
  53. Okura M, Fang J, Salto ML, Singer RS, Docampo R, Moreno SN (2005) A lipid-modified phosphoinositide-specific phospholipase C (TcPI-PLC) is involved in differentiation of trypomastigotes to amastigotes of Trypanosoma cruzi. J Biol Chem 280:16235–16243PubMedCrossRefGoogle Scholar
  54. Parsons M, Worthey EA, Ward PN, Mottram JC (2005) Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics 6:127PubMedCrossRefGoogle Scholar
  55. Ponting CP (2000) Novel repeats in ryanodine and IP3 receptors and protein O-mannosyltransferases. Trends Biochem Sci 25:48–50PubMedGoogle Scholar
  56. Pozos TC, Sekler I, Cyert MS (1996) The product of HUM1, a novel yeast gene, is required for vacuolar Ca2+/H+ exchange and is related to mammalian Na+/Ca2+ exchangers. Mol Cell Biol 16:3730–3741PubMedGoogle Scholar
  57. Rohloff P, Rodrigues CO, Docampo R (2003) Regulatory volume decrease in Trypanosoma cruzi involves amino acid efflux and changes in intracellular calcium. Mol Biochem Parasitol 126:219–230PubMedCrossRefGoogle Scholar
  58. Rohloff P, Montalvetti A, Docampo R (2004) Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi. J Biol Chem 279:52270–52281PubMedCrossRefGoogle Scholar
  59. Ruiz FA, Rodrigues CO, Docampo R (2001) Rapid changes in polyphosphate content within acidocalcisomes in response to cell growth, differentiation, and environmental stress in Trypanosoma cruzi. J Biol Chem 276:26114–26121PubMedCrossRefGoogle Scholar
  60. Scott DA, Docampo R (2000) Characterization of isolated acidocalcisomes of Trypanosoma cruzi. J Biol Chem 275:24215–24221PubMedCrossRefGoogle Scholar
  61. Scott DA, Docampo R, Dvorak JA, Shi S, Leapman RD (1997) In situ compositional analysis of acidocalcisomes in Trypanosoma cruzi. J Biol Chem 272:28020–28029PubMedCrossRefGoogle Scholar
  62. Scott DA, de Souza W, Benchimol M, Zhong L, Lu HG, Moreno SN, Docampo R (1998) Presence of a plant-like proton-pumping pyrophosphatase in acidocalcisomes of Trypanosoma cruzi. J Biol Chem 273:22151–22158PubMedCrossRefGoogle Scholar
  63. Selvapandiyan A, Kumar P, Morris JC, Salisbury JL, Wang CC, Nakhasi HL (2007) Centrin1 is required for organelle segregation and cytokinesis in Trypanosoma brucei. Mol Biol Cell 18:3290–3301PubMedCrossRefGoogle Scholar
  64. Shi J, Franklin JB, Yelinek JT, Ebersberger I, Warren G, He CY (2008) Centrin4 coordinates cell and nuclear division in T. brucei. J Cell Sci 121:3062–3070PubMedCrossRefGoogle Scholar
  65. Swellengrebel NH (1908) La volutine chez les trypanosomes. C R Soc Biol Paris 64:38–43Google Scholar
  66. Tellez-Iñón MT, Ulloa RM, Torruella M, Torres HN (1985) Calmodulin and Ca2+-dependent cyclic AMP phosphodiesterase activity in Trypanosoma cruzi. Mol Biochem Parasitol 17:143–153PubMedCrossRefGoogle Scholar
  67. Urbina JA, Moreno B, Vierkotter S, Oldfield E, Payares G, Sanoja C, Bailey BN, Yan W, Scott DA, Moreno SN, Docampo R (1999) Trypanosoma cruzi contains major pyrophosphate stores, and its growth in vitro and in vivo is blocked by pyrophosphate analogs. J Biol Chem 274:33609–33615PubMedCrossRefGoogle Scholar
  68. Vercesi AE, Bernardes CF, Hoffmann ME, Gadelha FR, Docampo R (1991a) Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ. J Biol Chem 266:14431–14434PubMedGoogle Scholar
  69. Vercesi AE, Hoffmann ME, Bernardes CF, Docampo R (1991b) Regulation of intracellular calcium homeostasis in Trypanosoma cruzi Effects of calmidazolium and trifluoperazine. Cell Calcium 12:361–369PubMedCrossRefGoogle Scholar
  70. Xiong ZH, Ruben L (1998) Trypanosoma brucei: the dynamics of calcium movement between the cytosol, nucleus, and mitochondrion of intact cells. Exp Parasitol 88:231–239PubMedCrossRefGoogle Scholar
  71. Yakubu MA, Majumder S, Kierszenbaum F (1994) Changes in Trypanosoma cruzi infectivity by treatments that affect calcium ion levels. Mol Biochem Parasitol 66:119–125PubMedCrossRefGoogle Scholar
  72. Yoshikawa F, Morita M, Monkawa T, Michikawa T, Furuichi T, Mikoshiba K (1996) Mutational analysis of the ligand binding site of the inositol 1, 4, 5-trisphosphate receptor. J Biol Chem 1271:18277–18284Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Center for Tropical and Emerging Global Diseases and Department of Cellular BiologyUniversity of GeorgiaAthensUSA

Personalised recommendations