Alexander, G. E. (1995). Basal ganglia. In M. A. Arbib (ed.), The handbook of brain theory and neural networks(pp. 139–143). Cambridge, MA: MIT Press.
Google Scholar
Alexander, G. E., Crutcher, M. D. & De Long, M. R. (1990). Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, »prefrontal« and »limbic« functions. Progress in Brain Research, 85,119–146.
PubMed
CrossRef
Google Scholar
Asanuma, H., Arnold, A. & Zarzecki, P. (1976). Further study on the excitation of pyramidal tract cells by intracortical microstimulation. Experimental Brain Research, 26,443–461.
CrossRef
Google Scholar
Baddeley, A. D. (1986). Working memory.New York: Oxford University Press.
Google Scholar
Bechara, A., Damasio, H., Damasio, A. R. & Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19,5473–5481.
PubMed
Google Scholar
Bechara, A., Damasio, H., Tranel, D. & Anderson, S. W. (1998) Dissociation of working memory from decision making within the human prefrontal cortex. Journal of Neuroscience, 18,428–437.
PubMed
Google Scholar
Botvinick, M. M., Braver, T. S., Carter, C. S., Barch, D. M. & Cohen, J. D. (2001). Evaluating the demand for control: Anterior cingulate cortex and crosstalk monitoring. Psychological Review, 108, 624–652.
PubMed
CrossRef
Google Scholar
Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien, dargestellt auf Grund des Zellbaues. Leipzig: JA Barth.
Google Scholar
Burgess, P. W. (2000). Strategy application disorder: The role of the frontal lobes in human multitasking. Psychological Research, 63,279–288.
PubMed
CrossRef
Google Scholar
Burgess, P. W., Veitch, E., de Lacy Costello A. & Shallice, T. (2000). The cognitive and neuroanatomical correlates of multitasking. Neuropsychologica, 38,848–863.
CrossRef
Google Scholar
Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E. & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex, 15, 1243–1249.
PubMed
CrossRef
Google Scholar
Damasio, A. (1998). Descartes' Irrtum: Fühlen, Denken und das menschliche Gehirn.München: dtv.
Google Scholar
Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M. & Damasio, A. R. (1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science, 264, 1102– 1105.
PubMed
CrossRef
Google Scholar
Decety, J. & Grezes, J. (1999). Neural mechanisms subserving the perception of human actions. Trends in Cognitive Sciences, 3,172–178.
PubMed
CrossRef
Google Scholar
Deiber, M. P., Honda, M., Ibañes, V., Sadato, N. & Hallett, M. (1999). Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: Effect of movement type and rate. Journal of Neurophysiology, 81, 3065–3077.
PubMed
Google Scholar
DeYoe, E. A. & Van Essen, D. C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neurosciences, 11, 219–226.
CrossRef
Google Scholar
Dick, J. P. R., Benecke, R., Rothwell, J. C., Day, B. L. & Marsden, C. D. (1986). Simple and complex movements in a patient with infarction of the right supplementary motor area. Movement Disorders, 1, 255–266.
PubMed
CrossRef
Google Scholar
Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V. & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91,176–180.
Google Scholar
Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia, and the cerebral cortex. Neural Networks, 12, 961–974.
PubMed
CrossRef
Google Scholar
Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10, 732–739.
PubMed
CrossRef
Google Scholar
Egner, T. & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of taskrelevant information. Nature Neuroscience, 8, 1784– 1790.
PubMed
CrossRef
Google Scholar
Elsner, B., Hommel, B., Mentschel, C., Drzezga, A., Prinz et al. (2002). Linking actions and their perceivable consequences in the human brain. Neuroimage, 17, 364–372.
PubMed
CrossRef
Google Scholar
Fadiga, L., Fogassi, L., Pavesi, G. & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73,2608–2611.
PubMed
Google Scholar
Fried, I., Katz, A., McCarthy, G., Sass, K. J., Williamson, P. et al. (1991). Functional organization of human supplementary motor cortex studied by electrical stimulation. Journal of Neuroscience, 11, 3656–3666.
PubMed
Google Scholar
Fritsch, G. & Hitzig, E. (1870). Über die elektrische Erregbarkeit des Grosshirns. Archiv der Anatomischen und Physiologischen Wissenschaften der Medizin, 37,300–332.
Google Scholar
Georgopoulos, A. P., Pellizzer, G., Poliakov, A. V. & Schieber, M. H. (1999). Neural coding of finger and wrist movements. Journal of Computational Neuroscience, 6,279–288.
PubMed
CrossRef
Google Scholar
Goldman-Rakic, P. S. (1987). Circuitry of the prefrontal cortex and the regulation of behavior by representational knowledge. In F. Plum & V. Mountcastle (eds.), Handbook of Physiology (pp. 373–417).Bethesda: American Physiological Society.
Google Scholar
Grafton, S. T., Arbib, M. A., Fadiga, L. & Rizzolatti, G. (1996). Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Experimental Brain Research, 112, 103–111.
Google Scholar
Graziano, M. S. A., Taylor, C. S. R. & Moore, T. (2002). Complex movements evoked by microstimulation of precentral cortex. Neuron, 34, 841–851.
PubMed
CrossRef
Google Scholar
Grèzes, J., Frith, C. D. & Passingham, R. E. (2004). Inferring false beliefs from the actions of oneself and others: An fMRI study. NeuroImage, 21,744–750.
PubMed
CrossRef
Google Scholar
Haggard, P., Aschersleben, G., Gehrke, J. & Prinz, W. (2002). Action, binding and awareness. In W. Prinz & B. Hommel (eds.), Common mechanisms in perception and action: Attention and Performance, vol. XIX(pp. 266–285). Oxford: Oxford University Press.
Google Scholar
Hallett, M. (2001). Plasticity of the human motor cortex and recovery from stroke. Brain Research Reviews, 36, 169–174.
PubMed
CrossRef
Google Scholar
Halsband, U., Ito, N., Tanji, J. & Freund, H. J. (1993). The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain, 116, 243– 266.
PubMed
CrossRef
Google Scholar
Hamilton, R. H. & Pascual-Leone, A. (1998). Cortical plasticity associated with Braille learning. Trends in Cognitive Sciences, 2,168–174.
PubMed
CrossRef
Google Scholar
Harlow, J. M. (1868). Recovery from the passage of an iron bar through the head. Publications of the Massachusetts Medical Society, 2,327–347.
Google Scholar
Haruno, M., Kuroda, T., Doya, K., Toyama, K., Kimura, M. et al. (2004). A neural correlate of reward-based behavioral learning in Caudate Nucleus: A Functional Magnetic Resonance Imaging study of a stochastic decision task. Journal of Neuroscience, 24, 1660–1665.
PubMed
CrossRef
Google Scholar
Holmes, G. (1917). The symptoms of acute cerebellar injuries due to gunshot injuries. Brain, 40, 461–535.
CrossRef
Google Scholar
Holmes, G. (1939). The cerebellum of man. Brain, 62, 1–30.
CrossRef
Google Scholar
Hommel, B. & Elsner, B. (2009). Acquisition, representation, and control of action. In E. Morsella, J. A. Bargh & P. M. Gollwitzer (eds.), Oxford handbook of human action(pp. 371–398). New York: Oxford University Press.
Google Scholar
Hubel, D. H. & Wiesel, T. N. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26, 1003–1017.
PubMed
Google Scholar
Huttenlocher, P. R. (1994). Synaptogenesis in human cerebral cortex. In G. Dawson & K. W. Fischer (eds.), Human behavior and the developing brain(pp. 35–54). New York: Guilford Press.
Google Scholar
Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R. et al. (2000). Human cerebellar activity reflecting an aquired internal model of a new tool. Nature, 403, 153–154.
CrossRef
Google Scholar
Keysers, C. & Perrett, D. I. (2004). Demystifying social cognition: A Hebbian perspective. Trends in Cognitive Sciences, 8, 501–507.
PubMed
CrossRef
Google Scholar
Kolb, B. & Whishaw, I. Q. (1996). Neuropsychologie. Heidelberg: Spektrum Akademischer Verlag.
Google Scholar
Konczak, J. (2008). Motorische Kontrolle. In J. Müsseler (Hrsg.), Allgemeine Psychologie. Heidelberg: Spektrum Akademischer Verlag
Google Scholar
Kringelbach, M. L. & Rolls, E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72, 341–372.
PubMed
CrossRef
Google Scholar
Kristeva-Feige, R., Feige, B., Makeig, S., Ross, B. & Elbert, T. (1993). Oscillatory brain activity during a motor task. NeuroReport, 4, 1291–1294.
PubMed
CrossRef
Google Scholar
Lau, H. C., Rogers, R. D., Haggard, P. & Passingham, R. E. (2004). Attention to intention. Science, 303, 1208–1210.
PubMed
CrossRef
Google Scholar
Liepert J., Tegenthoff, M. & Malin, J. P. (1995). Changes of cortical motor area size during immobilization. Electroencephalography and Clinical Neurophysiology, 97,382–386.
PubMed
CrossRef
Google Scholar
Luciani, L. (1891). Il cervelletto. Nuovi studi di fisiologia normale e patologica. Firenze: Le Monnier.
Google Scholar
MacDonald, A. W., Cohen, J. D., Stenger, V. A. & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulated cortex in cognitive control. Science, 288, 1835–1838.
PubMed
CrossRef
Google Scholar
Marcel, A. J. (2003). Introspective report: Trust, self-knowledge and science. Journal of Consciousness Studies, 10, 167– 186.
Google Scholar
Melcher, T., Weidema, M., Eenshuistra, R. M., Hommel, B. & Gruber, O. (2008). The neural substrate of the ideomotor principle: An event-related fMRI analysis. NeuroImage, 39, 1274–1288.
PubMed
CrossRef
Google Scholar
Middleton, F. A. & Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research Reviews, 31, 236–250.
PubMed
CrossRef
Google Scholar
Miller, E. K. & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24,167–202.
PubMed
CrossRef
Google Scholar
Pascual-Leone, A., Cammarota, A., Wassermann, E. M., Brasil- Neto, J. P., Cohen, L. G. et al. (1993). Modulation of motor cortical outputs to the reading hand of Braille readers. Annals of Neurology, 34, 33–37.
PubMed
CrossRef
Google Scholar
Pascual-Leone, A., Dang, N., Cohen, L. G., Brasil-Neto, J. P., Cammarota, A. et al. (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. Journal of Neurophysiology, 74, 1037–1045.
PubMed
Google Scholar
Pascual-Leone, A., Walsh, V. & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience – virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology, 10, 232–237.
PubMed
CrossRef
Google Scholar
Penfield, W. & Boldrey, E. (1937). Somatic motor and sensory representations in the cerebral cortex of man as studied by electrical stimulation. Brain, 60, 389–443.
CrossRef
Google Scholar
Penfield, W. & Rasmussen, T. (1950). The cerebral cortex of man: A clinical study of localization and function.New York: MacMillan.
Google Scholar
Pfurtscheller, G., Flotzinger, D. & Neuper, C. (1994). Differentiation between finger, toe and tongue movement in man based on 40 Hz EEG. Electroencephalography and Clinical Neuropsychology, 90, 456–460.
CrossRef
Google Scholar
Procyk, E. & Goldman-Rakic, P. M. (2006). Modulation of dorsolateral prefrontal delay activity during self-organized behavior. Journal of Neuroscience, 26, 11313–11323.
PubMed
CrossRef
Google Scholar
Rizzolatti, G. & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.
PubMed
CrossRef
Google Scholar
Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E. et al. (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Experimental Brain Research, 111,246–252.
CrossRef
Google Scholar
Rolls, E. T. (1999). The brain and emotion.Oxford: Oxford University Press.
Google Scholar
Sanes, J. N., Wang, J. & Donoghue, J. P. (1992). Immediate and delayed changes of rat motor cortical output representation with new forelimb configurations. Cerebral Cortex, 2, 141–152.
PubMed
CrossRef
Google Scholar
Schieber, M. H. (1999). Somatotopic gradients in the distributed organization of the human primary motor cortex hand area: Evidence from small infarcts. Experimental Brain Research, 128, 139–148.
CrossRef
Google Scholar
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.
PubMed
Google Scholar
Schultz, W., Apicella, P. & Ljungberg, T. (1993). Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. Journal of Neuroscience, 13, 900–913.
PubMed
Google Scholar
Shima, K. & Tanji, J. (1998). Both supplementary and presupplementary motor areas are crucial for the temporal organization of multiple movements. Journal of Neurophysiology, 80, 3247–3260.
PubMed
Google Scholar
Singer, W. (1994). The organization of sensory motor representations in the Neocortex: A hypothesis based on temporal coding. In Umilta, C. & Moscovitch, M. (eds.), Attention and performance XV: Conscious and nonconscious information processing(pp. 77–107). Cambridge, MA: MIT Press.
Google Scholar
Spelke, E. S. (1976). Infant's intermodal perception of events. Cognitive Psychology, 5,553–560.
CrossRef
Google Scholar
Tallon-Baudry, C. & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3, 151–162.
PubMed
CrossRef
Google Scholar
Tanji, J. & Shima, K. (1994). Role for supplementary motor area cells in planning several movements ahead. Nature, 371, 413–416.
PubMed
CrossRef
Google Scholar
Von der Malsburg, C. (1995). Binding in models of perception and brain function. Current Opinion in Neurobiology, 5, 520–526.
PubMed
CrossRef
Google Scholar
Von Holst, E. & Mittelstaedt, H. (1950). Das Reafferenzprinzip. Naturwissenschaften, 37, 464–476.
CrossRef
Google Scholar
Wolpert, D. M., Miall, R. C. & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2, 338–347.
PubMed
CrossRef
Google Scholar