Skip to main content

Neurobiologische Grundlagen der Planung und Ausführung von Bewegungen

  • Chapter
  • 5358 Accesses

Part of the Springer-Lehrbuch book series (SLB)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-12858-5_2
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   29.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-12858-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   37.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alexander, G. E. (1995). Basal ganglia. In M. A. Arbib (ed.), The handbook of brain theory and neural networks(pp. 139–143). Cambridge, MA: MIT Press.

    Google Scholar 

  • Alexander, G. E., Crutcher, M. D. & De Long, M. R. (1990). Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, »prefrontal« and »limbic« functions. Progress in Brain Research, 85,119–146.

    PubMed  CrossRef  Google Scholar 

  • Asanuma, H., Arnold, A. & Zarzecki, P. (1976). Further study on the excitation of pyramidal tract cells by intracortical microstimulation. Experimental Brain Research, 26,443–461.

    CrossRef  Google Scholar 

  • Baddeley, A. D. (1986). Working memory.New York: Oxford University Press.

    Google Scholar 

  • Bechara, A., Damasio, H., Damasio, A. R. & Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19,5473–5481.

    PubMed  Google Scholar 

  • Bechara, A., Damasio, H., Tranel, D. & Anderson, S. W. (1998) Dissociation of working memory from decision making within the human prefrontal cortex. Journal of Neuroscience, 18,428–437.

    PubMed  Google Scholar 

  • Botvinick, M. M., Braver, T. S., Carter, C. S., Barch, D. M. & Cohen, J. D. (2001). Evaluating the demand for control: Anterior cingulate cortex and crosstalk monitoring. Psychological Review, 108, 624–652.

    PubMed  CrossRef  Google Scholar 

  • Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien, dargestellt auf Grund des Zellbaues. Leipzig: JA Barth.

    Google Scholar 

  • Burgess, P. W. (2000). Strategy application disorder: The role of the frontal lobes in human multitasking. Psychological Research, 63,279–288.

    PubMed  CrossRef  Google Scholar 

  • Burgess, P. W., Veitch, E., de Lacy Costello A. & Shallice, T. (2000). The cognitive and neuroanatomical correlates of multitasking. Neuropsychologica, 38,848–863.

    CrossRef  Google Scholar 

  • Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E. & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex, 15, 1243–1249.

    PubMed  CrossRef  Google Scholar 

  • Damasio, A. (1998). Descartes' Irrtum: Fühlen, Denken und das menschliche Gehirn.München: dtv.

    Google Scholar 

  • Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M. & Damasio, A. R. (1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science, 264, 1102– 1105.

    PubMed  CrossRef  Google Scholar 

  • Decety, J. & Grezes, J. (1999). Neural mechanisms subserving the perception of human actions. Trends in Cognitive Sciences, 3,172–178.

    PubMed  CrossRef  Google Scholar 

  • Deiber, M. P., Honda, M., Ibañes, V., Sadato, N. & Hallett, M. (1999). Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: Effect of movement type and rate. Journal of Neurophysiology, 81, 3065–3077.

    PubMed  Google Scholar 

  • DeYoe, E. A. & Van Essen, D. C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neurosciences, 11, 219–226.

    CrossRef  Google Scholar 

  • Dick, J. P. R., Benecke, R., Rothwell, J. C., Day, B. L. & Marsden, C. D. (1986). Simple and complex movements in a patient with infarction of the right supplementary motor area. Movement Disorders, 1, 255–266.

    PubMed  CrossRef  Google Scholar 

  • Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V. & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91,176–180.

    Google Scholar 

  • Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia, and the cerebral cortex. Neural Networks, 12, 961–974.

    PubMed  CrossRef  Google Scholar 

  • Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10, 732–739.

    PubMed  CrossRef  Google Scholar 

  • Egner, T. & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of taskrelevant information. Nature Neuroscience, 8, 1784– 1790.

    PubMed  CrossRef  Google Scholar 

  • Elsner, B., Hommel, B., Mentschel, C., Drzezga, A., Prinz et al. (2002). Linking actions and their perceivable consequences in the human brain. Neuroimage, 17, 364–372.

    PubMed  CrossRef  Google Scholar 

  • Fadiga, L., Fogassi, L., Pavesi, G. & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73,2608–2611.

    PubMed  Google Scholar 

  • Fried, I., Katz, A., McCarthy, G., Sass, K. J., Williamson, P. et al. (1991). Functional organization of human supplementary motor cortex studied by electrical stimulation. Journal of Neuroscience, 11, 3656–3666.

    PubMed  Google Scholar 

  • Fritsch, G. & Hitzig, E. (1870). Über die elektrische Erregbarkeit des Grosshirns. Archiv der Anatomischen und Physiologischen Wissenschaften der Medizin, 37,300–332.

    Google Scholar 

  • Georgopoulos, A. P., Pellizzer, G., Poliakov, A. V. & Schieber, M. H. (1999). Neural coding of finger and wrist movements. Journal of Computational Neuroscience, 6,279–288.

    PubMed  CrossRef  Google Scholar 

  • Goldman-Rakic, P. S. (1987). Circuitry of the prefrontal cortex and the regulation of behavior by representational knowledge. In F. Plum & V. Mountcastle (eds.), Handbook of Physiology (pp. 373–417).Bethesda: American Physiological Society.

    Google Scholar 

  • Grafton, S. T., Arbib, M. A., Fadiga, L. & Rizzolatti, G. (1996). Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Experimental Brain Research, 112, 103–111.

    Google Scholar 

  • Graziano, M. S. A., Taylor, C. S. R. & Moore, T. (2002). Complex movements evoked by microstimulation of precentral cortex. Neuron, 34, 841–851.

    PubMed  CrossRef  Google Scholar 

  • Grèzes, J., Frith, C. D. & Passingham, R. E. (2004). Inferring false beliefs from the actions of oneself and others: An fMRI study. NeuroImage, 21,744–750.

    PubMed  CrossRef  Google Scholar 

  • Haggard, P., Aschersleben, G., Gehrke, J. & Prinz, W. (2002). Action, binding and awareness. In W. Prinz & B. Hommel (eds.), Common mechanisms in perception and action: Attention and Performance, vol. XIX(pp. 266–285). Oxford: Oxford University Press.

    Google Scholar 

  • Hallett, M. (2001). Plasticity of the human motor cortex and recovery from stroke. Brain Research Reviews, 36, 169–174.

    PubMed  CrossRef  Google Scholar 

  • Halsband, U., Ito, N., Tanji, J. & Freund, H. J. (1993). The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain, 116, 243– 266.

    PubMed  CrossRef  Google Scholar 

  • Hamilton, R. H. & Pascual-Leone, A. (1998). Cortical plasticity associated with Braille learning. Trends in Cognitive Sciences, 2,168–174.

    PubMed  CrossRef  Google Scholar 

  • Harlow, J. M. (1868). Recovery from the passage of an iron bar through the head. Publications of the Massachusetts Medical Society, 2,327–347.

    Google Scholar 

  • Haruno, M., Kuroda, T., Doya, K., Toyama, K., Kimura, M. et al. (2004). A neural correlate of reward-based behavioral learning in Caudate Nucleus: A Functional Magnetic Resonance Imaging study of a stochastic decision task. Journal of Neuroscience, 24, 1660–1665.

    PubMed  CrossRef  Google Scholar 

  • Holmes, G. (1917). The symptoms of acute cerebellar injuries due to gunshot injuries. Brain, 40, 461–535.

    CrossRef  Google Scholar 

  • Holmes, G. (1939). The cerebellum of man. Brain, 62, 1–30.

    CrossRef  Google Scholar 

  • Hommel, B. & Elsner, B. (2009). Acquisition, representation, and control of action. In E. Morsella, J. A. Bargh & P. M. Gollwitzer (eds.), Oxford handbook of human action(pp. 371–398). New York: Oxford University Press.

    Google Scholar 

  • Hubel, D. H. & Wiesel, T. N. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26, 1003–1017.

    PubMed  Google Scholar 

  • Huttenlocher, P. R. (1994). Synaptogenesis in human cerebral cortex. In G. Dawson & K. W. Fischer (eds.), Human behavior and the developing brain(pp. 35–54). New York: Guilford Press.

    Google Scholar 

  • Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R. et al. (2000). Human cerebellar activity reflecting an aquired internal model of a new tool. Nature, 403, 153–154.

    CrossRef  Google Scholar 

  • Keysers, C. & Perrett, D. I. (2004). Demystifying social cognition: A Hebbian perspective. Trends in Cognitive Sciences, 8, 501–507.

    PubMed  CrossRef  Google Scholar 

  • Kolb, B. & Whishaw, I. Q. (1996). Neuropsychologie. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Konczak, J. (2008). Motorische Kontrolle. In J. Müsseler (Hrsg.), Allgemeine Psychologie. Heidelberg: Spektrum Akademischer Verlag

    Google Scholar 

  • Kringelbach, M. L. & Rolls, E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72, 341–372.

    PubMed  CrossRef  Google Scholar 

  • Kristeva-Feige, R., Feige, B., Makeig, S., Ross, B. & Elbert, T. (1993). Oscillatory brain activity during a motor task. NeuroReport, 4, 1291–1294.

    PubMed  CrossRef  Google Scholar 

  • Lau, H. C., Rogers, R. D., Haggard, P. & Passingham, R. E. (2004). Attention to intention. Science, 303, 1208–1210.

    PubMed  CrossRef  Google Scholar 

  • Liepert J., Tegenthoff, M. & Malin, J. P. (1995). Changes of cortical motor area size during immobilization. Electroencephalography and Clinical Neurophysiology, 97,382–386.

    PubMed  CrossRef  Google Scholar 

  • Luciani, L. (1891). Il cervelletto. Nuovi studi di fisiologia normale e patologica. Firenze: Le Monnier.

    Google Scholar 

  • MacDonald, A. W., Cohen, J. D., Stenger, V. A. & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulated cortex in cognitive control. Science, 288, 1835–1838.

    PubMed  CrossRef  Google Scholar 

  • Marcel, A. J. (2003). Introspective report: Trust, self-knowledge and science. Journal of Consciousness Studies, 10, 167– 186.

    Google Scholar 

  • Melcher, T., Weidema, M., Eenshuistra, R. M., Hommel, B. & Gruber, O. (2008). The neural substrate of the ideomotor principle: An event-related fMRI analysis. NeuroImage, 39, 1274–1288.

    PubMed  CrossRef  Google Scholar 

  • Middleton, F. A. & Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research Reviews, 31, 236–250.

    PubMed  CrossRef  Google Scholar 

  • Miller, E. K. & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24,167–202.

    PubMed  CrossRef  Google Scholar 

  • Pascual-Leone, A., Cammarota, A., Wassermann, E. M., Brasil- Neto, J. P., Cohen, L. G. et al. (1993). Modulation of motor cortical outputs to the reading hand of Braille readers. Annals of Neurology, 34, 33–37.

    PubMed  CrossRef  Google Scholar 

  • Pascual-Leone, A., Dang, N., Cohen, L. G., Brasil-Neto, J. P., Cammarota, A. et al. (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. Journal of Neurophysiology, 74, 1037–1045.

    PubMed  Google Scholar 

  • Pascual-Leone, A., Walsh, V. & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience – virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology, 10, 232–237.

    PubMed  CrossRef  Google Scholar 

  • Penfield, W. & Boldrey, E. (1937). Somatic motor and sensory representations in the cerebral cortex of man as studied by electrical stimulation. Brain, 60, 389–443.

    CrossRef  Google Scholar 

  • Penfield, W. & Rasmussen, T. (1950). The cerebral cortex of man: A clinical study of localization and function.New York: MacMillan.

    Google Scholar 

  • Pfurtscheller, G., Flotzinger, D. & Neuper, C. (1994). Differentiation between finger, toe and tongue movement in man based on 40 Hz EEG. Electroencephalography and Clinical Neuropsychology, 90, 456–460.

    CrossRef  Google Scholar 

  • Procyk, E. & Goldman-Rakic, P. M. (2006). Modulation of dorsolateral prefrontal delay activity during self-organized behavior. Journal of Neuroscience, 26, 11313–11323.

    PubMed  CrossRef  Google Scholar 

  • Rizzolatti, G. & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.

    PubMed  CrossRef  Google Scholar 

  • Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E. et al. (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Experimental Brain Research, 111,246–252.

    CrossRef  Google Scholar 

  • Rolls, E. T. (1999). The brain and emotion.Oxford: Oxford University Press.

    Google Scholar 

  • Sanes, J. N., Wang, J. & Donoghue, J. P. (1992). Immediate and delayed changes of rat motor cortical output representation with new forelimb configurations. Cerebral Cortex, 2, 141–152.

    PubMed  CrossRef  Google Scholar 

  • Schieber, M. H. (1999). Somatotopic gradients in the distributed organization of the human primary motor cortex hand area: Evidence from small infarcts. Experimental Brain Research, 128, 139–148.

    CrossRef  Google Scholar 

  • Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.

    PubMed  Google Scholar 

  • Schultz, W., Apicella, P. & Ljungberg, T. (1993). Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. Journal of Neuroscience, 13, 900–913.

    PubMed  Google Scholar 

  • Shima, K. & Tanji, J. (1998). Both supplementary and presupplementary motor areas are crucial for the temporal organization of multiple movements. Journal of Neurophysiology, 80, 3247–3260.

    PubMed  Google Scholar 

  • Singer, W. (1994). The organization of sensory motor representations in the Neocortex: A hypothesis based on temporal coding. In Umilta, C. & Moscovitch, M. (eds.), Attention and performance XV: Conscious and nonconscious information processing(pp. 77–107). Cambridge, MA: MIT Press.

    Google Scholar 

  • Spelke, E. S. (1976). Infant's intermodal perception of events. Cognitive Psychology, 5,553–560.

    CrossRef  Google Scholar 

  • Tallon-Baudry, C. & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3, 151–162.

    PubMed  CrossRef  Google Scholar 

  • Tanji, J. & Shima, K. (1994). Role for supplementary motor area cells in planning several movements ahead. Nature, 371, 413–416.

    PubMed  CrossRef  Google Scholar 

  • Von der Malsburg, C. (1995). Binding in models of perception and brain function. Current Opinion in Neurobiology, 5, 520–526.

    PubMed  CrossRef  Google Scholar 

  • Von Holst, E. & Mittelstaedt, H. (1950). Das Reafferenzprinzip. Naturwissenschaften, 37, 464–476.

    CrossRef  Google Scholar 

  • Wolpert, D. M., Miall, R. C. & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2, 338–347.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hommel, B., Nattkemper, D. (2011). Neurobiologische Grundlagen der Planung und Ausführung von Bewegungen. In: Handlungspsychologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12858-5_2

Download citation