Skip to main content

Towards the Discovery of Reliable Biomarkers from Gene-Expression Profiles: An Iterative Constraint Satisfaction Learning Approach

  • Conference paper
Book cover Artificial Intelligence: Theories, Models and Applications (SETN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6040))

Included in the following conference series:

  • 2072 Accesses

Abstract

The article demonstrates the use of Multiple Iterative Constraint Satisfaction Learning (MICSL) process in inducing gene-markers from microarray gene-expression profiles. MICSL adopts a supervised learning from examples framework and proceeds by optimizing an evolving zero-one optimization model with constraints. After a data discretization pre-processing step, each example sample is transformed into a corresponding constraint. Extra constraints are added to guarantee mutual-exclusiveness between gene (feature) and assigned phenotype (class) values. The objective function corresponds to the learning outcome and strives to minimize use of genes by following an iterative constraint-satisfaction mode that finds solutions of increasing complexity. Standard (c4.5-like) pruning and rule-simplification processes are also incorporated. MICSL is applied on several well-known microarray datasets and exhibits very good performance that outperforms other established algorithms, providing evidence that the approach is suited for the discovery of biomarkers from microarray experiments. Implications of the approach in the biomedical informatics domain are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sander, C.: Genomic Medicine and the Future of Health Care. Science 287(5460), 1977–1978 (2000)

    Article  Google Scholar 

  2. Sanchez, F.M., Iakovidis, I., et al.: Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care. Journal of Biomedical Informatics 37(1), 30–42 (2004)

    Article  Google Scholar 

  3. McConnell, P., Johnson, K., Lockhart, D.J.: An introduction to DNA microarrays. In: 2nd Conference on Critical Assessment of Microarray Data Analysis (CAMDA 2001) - Methods of Microarray Data Analysis II, pp. 9–21 (2002)

    Google Scholar 

  4. Dopazo, J.: Microarray data processing and analysis. In: 2nd Conference on Critical Assessment of Microarray Data Analysis (CAMDA 2001) - Methods of Microarray Data Analysis II, pp. 43–63 (2002)

    Google Scholar 

  5. Piatetsky-Shapiro, G., Tamayo, P.: Microarray Data Mining: Facing the Challenges. ACM SIGKDD Explorations 5(5), 1–5 (2003)

    Article  Google Scholar 

  6. Butte, A.J.: Translational Bioinformatics: Coming of Age. J Am. Med. Inform. Assoc. 15(6), 709–714 (2008)

    Article  Google Scholar 

  7. Golub, T.R., Slonim, D.K., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)

    Article  Google Scholar 

  8. Van’t Veer, L.J., Dai, H., et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871), 530–536 (2002)

    Article  Google Scholar 

  9. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissue probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. 96(12), 6745–6750 (1999)

    Article  Google Scholar 

  10. Pomeroy, S.L., Tamayo, P., et al.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002)

    Article  Google Scholar 

  11. Gordon, G.J., Jensen, R.V., et al.: Translation of Microarray Data into Clinically Relevant Cancer Diagnostic Tests Using Gene Expression Ratios in Lung Cancer and Mesothelioma. Cancer Research 62, 4963–4967 (2002)

    Google Scholar 

  12. Alizadeh, A.A., Eisen, M.B., et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503–511 (2000)

    Article  Google Scholar 

  13. Petricoin, E.F., Ardekani, A.M., et al.: Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359(93056), 572–577 (2002)

    Article  Google Scholar 

  14. Potamias, G.: MICSL: Multiple Iterative Constraint Satisfaction based Learning. Intell. Data Anal. 3(4), 245–265 (1999)

    Article  MATH  Google Scholar 

  15. Hunt, E.B., Marin, J., Stone, P.J.: Experiments in Induction. Academic Press, New York (1966)

    Google Scholar 

  16. Michalski, R.C.: Concept Learning. Encyvlopedia of Artificial Intelligence 1, 185–194 (1986)

    Google Scholar 

  17. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes for classification learning. In: 13th International Joint Conference of Artificial Intelligence, pp. 1022–1027 (1993)

    Google Scholar 

  18. Li, J., Wong, L.: Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns. Bioinformatics 18(5), 725–734 (2002)

    Article  Google Scholar 

  19. Quinlan, J.R.: C4.5: Programs for Machine Learning. Kaufmann Publishers Inc., San Mateo (1993)

    Google Scholar 

  20. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27(379–423), 623–656 (1948)

    MathSciNet  Google Scholar 

  21. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.E.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1), 10–18 (2009)

    Article  Google Scholar 

  22. Bell, C., Nerode, A., Raymond, T.N., Subrahmanian, V.S.: Implementing deductive databases by mixed integer programming. ACM Transactions on Database Systems 21(2), 238–269 (1996)

    Article  Google Scholar 

  23. Cohen, W.W.: Fast Effective Rule Induction. In: 12th International Conference on Machine Learning, pp. 115–123 (1995)

    Google Scholar 

  24. Frank, E., Witten, I.H.: Generating Accurate Rule Sets Without Global Optimization. In: 15th International Conference on Machine Learning, pp. 144–151 (1998)

    Google Scholar 

  25. Pazzani, M.J., Sarrett, W.: A framework for the average case analysis of conjunctive learning algorithms. Machine Learning 9, 349–372 (1992)

    Google Scholar 

  26. Kohavi, R.: The Power of Decision Tables. In: 8th European Conference on Machine Learning, pp. 174–189 (1995)

    Google Scholar 

  27. Hall, M., Frank, E.: Combining Naive Bayes and Decision Tables. In: 21st Florida Artificial Intelligence Society Conference, pp. 15–17 (2008)

    Google Scholar 

  28. Martin, B.: Instance-based learning: nearest neighbor with generalization. Master Thesis, University of. Waikato, Hamilton, New Zealand (1995)

    Google Scholar 

  29. Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Machine Learning 11, 63–91 (1993)

    Article  MATH  Google Scholar 

  30. Gaines, B.R., Compton, P.: Induction of Ripple-Down Rules. In: 5th Australian Joint Conference on Artificial Intelligence, pp. 349–354 (1992)

    Google Scholar 

  31. Singh, D., Febbo, P.G., et al.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2), 203–209 (2002)

    Article  Google Scholar 

  32. Sorace, J.M., Zhan, M.: A data review and re-assessment of ovarian cancer serum proteomic profiling. BMC Bioinformatics 4, 24 (2003)

    Article  Google Scholar 

  33. West, M., Blanchette, C., et al.: Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl. Acad. Sci. 98(20), 11462–11467 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Potamias, G., Koumakis, L., Kanterakis, A., Moustakis, V. (2010). Towards the Discovery of Reliable Biomarkers from Gene-Expression Profiles: An Iterative Constraint Satisfaction Learning Approach. In: Konstantopoulos, S., Perantonis, S., Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds) Artificial Intelligence: Theories, Models and Applications. SETN 2010. Lecture Notes in Computer Science(), vol 6040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12842-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12842-4_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12841-7

  • Online ISBN: 978-3-642-12842-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics