Alden, M.A.: MARLEDA: Effective Distribution Estimation Through Markov Random Fields. PhD thesis, Faculty of the Graduate Schoool, University of Texas at Austin, USA (December 2007)
Google Scholar
Besag, J.: Spatial interactions and the statistical analysis of lattice systems (with discussions). Journal of the Royal Statistical Society 36, 192–236 (1974)
MATH
MathSciNet
Google Scholar
Born, C., Kerbosch, J.: Algorithms 457 - finding all cliques of an undirected graph. Communications of the ACM 16(6), 575–577 (1973)
CrossRef
Google Scholar
Brown, D.F., Garmendia-Doval, A.B., McCall, J.A.W.: Markov Random Field Modelling of Royal Road Genetic Algorithms. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 65–78. Springer, Heidelberg (2002)
CrossRef
Google Scholar
Brownlee, A., McCall, J., Brown, D.: Solving the MAXSAT problem using a Multivariate EDA based on Markov Networks. In: A late breaking paper in GECCO 2007 : Proceedings of the 2007 conference on Genetic and Evolutionary Computation, Global Link Publishing (2007)
Google Scholar
Brownlee, A., McCall, J., Zhang, Q., Brown, D.: Approaches to selection and their effect on fitness modelling in an estimation of distribution algorithm. In: Proceedings of the 2008 Congress on Evolutionary Computation CEC-2008, Hong Kong, pp. 2621–2628. IEEE Press, Los Alamitos (2008)
Google Scholar
Brownlee, A.E.I.: Multivariate Markov networks for fitness modelling in an estimation of distribution algorithm. PhD thesis, The Robert Gordon University. School of Computing, Aberdeen, UK (2009)
Google Scholar
Brownlee, A.E.I., Wu, Y., McCall, J.A.W., Godley, P.M., Cairns, D.E., Cowie, J.: Optimisation and fitness modelling of bio-control in mushroom farming using a Markov network EDA. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2008), Atlanta, Georgia, USA, pp. 465–466. ACM, New York (2008)
CrossRef
Google Scholar
Etxeberria, R., Larrañaga, P.: Global optimization using Bayesian networks. In: Ochoa, A., Soto, M.R., Santana, R. (eds.) Proceedings of the Second Symposium on Artificial Intelligence (CIMAF 1999), Havana, Cuba, pp. 151–173 (1999)
Google Scholar
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. In: Fischler, M.A., Firschein, O. (eds.) Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, pp. 564–584. Kaufmann, Los Altos (1987)
Google Scholar
Hammersley, J.M., Clifford, P.: Markov fields on finite graphs and lattices (1971) (Unpublished)
Google Scholar
Henrion, M.: Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In: Lemmer, J.F., Kanal, L.N. (eds.) Uncertainty in Artificial Intelligence, vol. 2, pp. 149–163. North-Holland, Amsterdam (1988)
Google Scholar
Jordan, M.I. (ed.): Learning in Graphical Models. NATO Science Series. Kluwer Academic Publishers, Dordrecht (1998)
MATH
Google Scholar
Kikuchi, R.: A Theory of Cooperative Phenomena. Physical Review 81, 988–1003 (1951)
MATH
CrossRef
MathSciNet
Google Scholar
Kindermann, R., Snell, J.L.: Markov Random Fields and Their Applications. AMS (1980)
Google Scholar
Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Combinatorial optimization by learning and simulation of Bayesian networks. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, Stanford, pp. 343–352 (2000)
Google Scholar
Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2002)
MATH
Google Scholar
Lauritzen, S.L.: Graphical Models. Oxford University Press, Oxford (1996)
Google Scholar
Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society B 50, 157–224 (1988)
MATH
MathSciNet
Google Scholar
Li, S.Z.: Markov Random Field modeling in computer vision. Springer, Heidelberg (1995)
Google Scholar
Lim, D., Jin, Y., Ong, Y.-S., Sendhoff, B.: Generalizing surrogate-assisted evolutionary computation. IEEE Transactions on Evolutionary Computation (2008)
Google Scholar
Metropolis, N.: Equations of state calculations by fast computational machine. Journal of Chemical Physics 21, 1087–1091 (1953)
CrossRef
Google Scholar
Mühlenbein, H., Mahnig, T.: FDA - A scalable evolutionary algorithm for the optimization of additively decomposed functions. Evolutionary Computation 7(4), 353–376 (1999)
CrossRef
Google Scholar
Mühlenbein, H., Mahnig, T., Ochoa, A.R.: Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics 5(2), 215–247 (1999)
MATH
CrossRef
Google Scholar
Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions: I. binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)
CrossRef
Google Scholar
Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, University of California, Berkeley (2002)
Google Scholar
Murray, I., Ghahramani, Z.: Bayesian Learning in Undirected Graphical Models: Approximate MCMC algorithms. In: Twentieth Conference on Uncertainty in Artificial Intelligence (UAI 2004), Banff, Canada, July 8-11 (2004)
Google Scholar
Ochoa, A., Soto, M.R., Santana, R., Madera, J., Jorge, N.: The factorized distribution algorithm and the junction tree: A learning perspective. In: Ochoa, A., Soto, M.R., Santana, R. (eds.) Proceedings of the Second Symposium on Artificial Intelligence (CIMAF 1999), Havana, Cuba, March 1999, pp. 368–377 (1999)
Google Scholar
Ong, Y.S., Nair, P.B., Keane, A.J., Wong, K.W.: Surrogate-assisted evolutionary optimization frameworks for high-fidelity engineering design problems. In: In Knowledge Incorporation in Evolutionary Computation, pp. 307–332. Springer, Heidelberg (2004)
Google Scholar
Peña, J., Robles, V., Larrañaga, P., Herves, V., Rosales, F., Pérez, M.: GA-EDA: Hybrid evolutionary algorithm using genetic and estimation of distribution algorithms. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 361–371. Springer, Heidelberg (2004)
Google Scholar
Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman Publishers, Palo Alto (1988)
Google Scholar
Pelikan, M.: Bayesian optimization algorithm: From single level to hierarchy. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL, Also IlliGAL Report No. 2002023 (2002)
Google Scholar
Pelikan, M., Goldberg, D.E.: Hierarchical problem solving by the Bayesian optimization algorithm. IlliGAL Report No. 2000002, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL (2000)
Google Scholar
Pelikan, M., Goldberg, D.E.: Hierarchical BOA solves Ising spin glasses and MAXSAT. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1271–1282. Springer, Heidelberg (2003)
CrossRef
Google Scholar
Pelikan, M., Ocenasek, J., Trebst, S., Troyer, M., Alet, F.: Computational complexity and simulation of rare events of ising spin glasses. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 36–47. Springer, Heidelberg (2004)
Google Scholar
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1993)
Google Scholar
Santana, R.: A Markov network based factorized distribution algorithm for optimization. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 337–348. Springer, Heidelberg (2003)
Google Scholar
Santana, R.: Estimation of Distribution Algorithms with Kikuchi Approximation. Evolutionary Computation 13, 67–98 (2005)
CrossRef
Google Scholar
Santana, R., Larrañaga, P., Lozano, J.A.: Mixtures of Kikuchi approximations. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 365–376. Springer, Heidelberg (2006)
CrossRef
Google Scholar
Sastry, K., Lima, C., Goldberg, D.E.: Evaluation relaxation using substructural information and linear estimation. In: Proceedings of the Genetic and Evolutionary Computation COnference (GECCO 2006), pp. 419–426. ACM Press, New York (2006)
CrossRef
Google Scholar
Shakya, S.: DEUM: A Framework for an Estimation of Distribution Algorithm based on Markov Random Fields. PhD thesis, The Robert Gordon University, Aberdeen, UK (April 2006)
Google Scholar
Shakya, S., McCall, J.: Optimisation by Estimation of Distribution with DEUM framework based on Markov Random Fields. International Journal of Automation and Computing 4, 262–272 (2007)
CrossRef
Google Scholar
Shakya, S., McCall, J., Brown, D.: Updating the probability vector using MRF technique for a univariate EDA. In: Onaindia, E., Staab, S. (eds.) Proceedings of the Second Starting AI Researchers’ Symposium, Valencia, Spain, August 2004. Frontiers in Artificial Intelligence and Applications, vol. 109, pp. 15–25. IOS Press, Amsterdam (2004)
Google Scholar
Shakya, S., McCall, J., Brown, D.: Using a Markov Network Model in a Univariate EDA: An Emperical Cost-Benefit Analysis. In: Proceedings of Genetic and Evolutionary Computation COnference (GECCO2005), Washington, D.C., USA, pp. 727–734. ACM, New York (2005)
Google Scholar
Shakya, S., McCall, J., Brown, D.: Solving the Ising spin glass problem using a bivariate EDA based on Markov Random Fields. In: Proceedings of IEEE Congress on Evolutionary Computation (IEEE CEC 2006), Vancouver, Canada, pp. 3250–3257. IEEE Press, Los Alamitos (2006)
Google Scholar
Shakya, S., Santana, R.: An EDA based on local Markov property and Gibbs sampling. In: Proceedings of Genetic and Evolutionary Computation COnference (GECCO 2008), Atlanta, Georgia, USA. ACM, New York (2008)
Google Scholar
Shakya, S., Santana, R.: A markovianity based optimisation algorithm. Technical Report Technical Report EHU-KZAA-IK-3/08, Department of Computer Science and Artificial Intelligence, University of the Basque Country (September 2008)
Google Scholar
Sun, J., Zhang, Q., Li, J., Yao, X.: A hybrid estimation of distribution algorithm for cdma cellular system design. International Journal of Computational Intelligence and Applications 7(2), 187–200 (2008)
MATH
CrossRef
Google Scholar
Wu, Y., McCall, J., Godley, P., Brownlee, A., Cairns, D.: Bio-control in mushroom farming using a markov network eda. In: Proceedings of the 2008 Congress on Evolutionary Computation, pp. 2996–3001 (2008)
Google Scholar
Zhang, Q., Sun, J.: Iterated local search with guided mutation. In: Proceedings of the IEEE World Congress on Computational Intelligence (CEC 2006), pp. 924–929. IEEE Press, Los Alamitos (2006)
Google Scholar
Zhang, Q., Sun, J., Tsang, E.: An evolutionary algorithm with guided mutation for the maximum clique problem. IEEE Transactions on Evolutionary Computation 9(2), 192–200 (2005)
CrossRef
Google Scholar