Skip to main content

The Future of Coastal Altimetry

  • Chapter
  • First Online:
Coastal Altimetry

Abstract

Conventional ocean-viewing radar altimeters (RA) have inherent limitations that become especially apparent when considering applications in the coastal environment. This chapter looks at three new technologies, two of which are to be on forthcoming missions: the delay-Doppler (or SAR mode) altimeter, to be embarked on CryoSat-2 and Sentinel-3, and Alti-Ka, on India’s SARAL mission (previously Oceansat-3). These instruments are nadir-viewing, each featuring a smaller footprint, improved tracking, and finer measurement precision. Wide swath techniques also are reviewed, represented by KaRIn. That concept offers altimetric coverage over an area that extends nominally 80 km to both sides of its nadir track. Relative to coastal applications, all three approaches have their respective advantages and limitations, highlighted in the discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Chapter by Benveniste, this volume.

  2. 2.

    See Chapter by Dufau et al., this volume.

  3. 3.

    See Chapter by Ray et al., this volume.

  4. 4.

    See Chapter by Benveniste, this volume.

  5. 5.

    By international spectral allocation agreements, this bandwidth is the largest available for space-based earth observation at Ka-band.

  6. 6.

    If Eq. 20.3 is recast in terms of temporal range resolution τ, the resulting expression is equivalent to the classic form, except for Walsh’s Earth curvature term 1/a (Eq. 20.2). Walsh introduced that factor to scale spacecraft velocity V into the surface footprint velocity, which was not a correct rendition of the underlying physics.

  7. 7.

    From this point of view, the PRF upper bound may be seen as the obverse of the Nyquist sampling criterion, which states that to assure pulse-to-pulse correlation the sampling rate must be larger than the bandwidth of the (complex) spectrum being sampled.

  8. 8.

    http://earth.esa.int/raies

  9. 9.

    See Chapter by Gommenginger et al., this volume.

  10. 10.

    http://www.coastalt.eu/pisaworkshop08/pres/07-Phalippou_Pise_Coastal_Workshop_Nov_08.pdf

Abbreviations

CTE:

Coefficient of Thermal Expansion

DDA:

Delay-Doppler Altimeter

DEM:

Digital Elevation Model

DORIS:

Doppler Orbitography and Radiopositioning Integrated by Satellite

EM:

ElectroMagnetic

FFT:

Fast Fourier Transform

GAMBLE:

Global Altimeter Measurements By Leading Europeans

JPL:

Jet Propulsion Laboratory

KaRIN:

Ka-band Radar INterferometer

KaSOARI:

Ka-band Swath Ocean Altimetry with Radar Interferometry

POD:

Precision Orbit Determination

PRF:

Pulse-Repetition Frequency

RA:

Conventional non-coherent Radar Altimeter

RAR:

Real Aperture Radar

SAR:

Synthetic Aperture Radar

SARAL:

Satellite with ARgos and ALtika

SIRAL-2:

SAR/Interferometric Radar ALtimeter

SRTM:

Shuttle Radar Topography Mission

SRAL:

SAR Radar ALtimeter

SSH:

Sea Surface Height

SWH:

Significant Wave Height

SWOT:

Surface Water and Ocean Topography

WITTEX:

Water Inclination Topography and Technology EXperiment

WS:

Wind Speed

WSOA:

Wide Swath Ocean Altimeter

WVR:

Water-Vapor Radiometer

References

  • Allan TD, Ash ER (2003) The GAMBLE project: a fresh approach to satellite remote sensing of the sea. Phil Trans Roy Soc 361:23–26

    Article  Google Scholar 

  • Bamler R, Eineder M, Kampes B, Runge H, Adam N (2003) SRTM and beyond: current situation and new developments in spaceborne InSAR. In: Proceedings, ISPRS workshop on high resolution mapping from space, Hanover, Germany

    Google Scholar 

  • Brown GS (1976) Multiple beam radar altimetry for oceanographic and terrian remote sensing. Applied Science Associates, Apex, NC

    Google Scholar 

  • Brown GS (1977) The average impulse response of a rough surface and its applications. IEEE Antennas Propagat 25:67–74

    Article  Google Scholar 

  • Bush GB, Dobson EB, Matyskiela R, Kilgus CC, Walsh EJ (1984) An analysis of a satellite multibeam altimeter. Mar Geodesy 8(1–4):345–384

    Article  Google Scholar 

  • Chelton DB, Walsh EJ, MacArthur JL (1989) Pulse compression and sea-level tracking in satellite altimetry. J Atmos Ocean Technol 6:407–438

    Article  Google Scholar 

  • Chen G, Quartly GD (2006) Editorial: special issue on satellite altimetry: new sensors and new applications. Sensors 6(6):542–696

    Google Scholar 

  • Curlander JC, McDonough RN (1991) Synthetic aperture radar: systems and signal processing. Wiley, New York

    Google Scholar 

  • daSilva-Curiel RA, Jolly G, Zheng Y (1999) The GANDER constellation for maritime disaster mitigation. Acta Astron 44:685–692

    Article  Google Scholar 

  • Enjolras V, Rodriguez E (2007) An assessment of the Ka band interferometric radar altimeter for monitoring rivers and lakes with the WatER mission. In: Proceedings, IEEE IGARSS, Barcelona, Spain, pp 3525–3528

    Google Scholar 

  • Fu LL, Cazenave A (eds) (2001) Satellite altimetry and the earth sciences. Academic, San Diego, CA

    Google Scholar 

  • Gommenginger C, Challenor P, Quartly GD, Srokosz MA, Berry PAM, Rogers C, Benveniste J (2007) Envisat altimeter individual echoes: new scientific applications for ocean, land, and ice remote sensing. Geophys Res Abstracts 9:08979

    Google Scholar 

  • Graham L (1974) Synthetic interferometers for topographic mapping. Proc IEEE 62(6):763–768

    Article  Google Scholar 

  • Green PE Jr (1968) Radar measurements of target scattering properties. In: Evans JV, Hagfors T (eds) Radar astronomy. McGraw-Hill, New York

    Google Scholar 

  • Hanssen R (2001) Radar interferometry: data interpretation and error analysis. Kluwer, Dordrecht, the Netherlands

    Google Scholar 

  • Hayne GS (1980) Radar altimeter mean return waveforms from near-normal incidence ocean surface scattering. IEEE Antennas Propagat AP-28(5):687–692

    Google Scholar 

  • Jayles C, Vincent P, Rozo F, Balandreaud F (2004) Doris-Diode: Jason-1 has a navigator on board. Mar Geodesy 27:753–777

    Article  Google Scholar 

  • LeRoy Y, Deschaux-Beaume M, Mavrocordatos C, Aquirre M, Heliere F (2007) SRAL SAR radar altimeter for Sentinel-3 mission. In: Proceedings, IEEE IGARSS, Barcelona, Spain, pp 219–222

    Google Scholar 

  • MacArthur JL (1976) Design of the Seasat-A radar altimeter. Oceans 8:222–229

    Google Scholar 

  • MacArthur JL, Marth PC, Wall JG (1987) The Geosat radar altimeter. Johns Hopkins APL Techn Digest 8(2):176–181

    Google Scholar 

  • Massonnet D (1996) Tracking the Earth’s surface at the centimeter level – an introduction to radar interferometry. Nat Resour 32(4):20–29

    Google Scholar 

  • Moore RK, Williams CS Jr (1957) Radar return at near-vertical incidence. Proc IRE 45(2):228–238

    Article  Google Scholar 

  • Phalippou L, Enjolras V (2007) Re-tracking of SAR altimeter ocean power waveforms and related accuracies of sea surface height, significant eave height, and wind speed. In: Proceedings, IEEE IGARSS, Barcelona, Spain

    Google Scholar 

  • Phalippou L, Guirraro J (2004) End to end performances of a short baseline interferometric radar altimeter for ocean mesoscale mapping. In: Proceedings, IEEE IGARSS, Anchorage, Alaska

    Google Scholar 

  • Pollard BD, Rodriguez E, Veilleux L (2002a) The wide swath ocean altimeter: radar inerferometry for global ocean mapping with centimetric accuracy. In: Proceedings, IEEE aerospace conference, vol 2, pp 1007–1020

    Google Scholar 

  • Pollard BD, Rodriguez E, Veilleux L (2002b) The wide swath ocean altimeter: radar interferometry for global ocean mapping with centimetric accuracy. In: Proceedings, AEEE aerospace conference, vol 2, pp 1007–1020

    Google Scholar 

  • Raney RK (1998a) The delay Doppler radar altimeter. IEEE Trans Geosci Remote Sens 36(5):1578–1588

    Article  Google Scholar 

  • Raney RK (1998b) Radar fundamentals: technical perspective. In: Henderson F, Lewis A (eds) Principles and applications of imaging radar, 3rd edn. Wiley, New York, pp 9–130

    Google Scholar 

  • Raney RK (2005) Radar altimetry. In: Chang K (ed) Encyclopedia of RF and microwave engineering, vol 5. Wiley, Hoboken, NJ, pp 3989–4005

    Google Scholar 

  • Raney RK (2008) Space-based radars. In: Skolnik M (ed) The radar handbook, 3rd edn, chap 18. McGraw-Hill, New York

    Google Scholar 

  • Raney RK, Porter DL (2001) WITTEX: an innovative three-satellite radar altimeter concept. IEEE Trans Geosci Remote Sens 39(11):2387–2391

    Article  Google Scholar 

  • Rapley CG, Griffiths HD, Berry PAM (1990) Proceedings of the consultative meeting on altimeter requirements and techniques, Final Report (ESA Reference UCL/MSSL/RSG/90.01). University College, London, England

    Google Scholar 

  • Rey L, DeChateau-Thierry P, Phalippou L, Calvary P (2004) SIRAL the radar altimeter for the CryoSat mission, pre-launch performances. In: Proceedings, IEEE IGARSS, Anchorage, Alaska, pp 669–671

    Google Scholar 

  • Richard J, Phalippou L, Robert F, Steunou N, Thouvenot E, Senenges P (2007) An advanced concept of radar altimetry over oceans with improved performances and ocean sampling: AltiKa. In: Proceedings, IEEE IGARSS, Barcelona, Spain, pp 3537–3540

    Google Scholar 

  • Rodriguez E, Martin J (1992) Theory and design of interferometric synthetic aperture radars. IEEE Proc Radar Signal Process 139:147–159

    Article  Google Scholar 

  • Rodriguez E, Pollard BD (2001) The measurement capabilities of wide-swath ocean altimeters. In: Chelton D (ed.) Report of the high-resolution ocean topography science working group meeting, oregon State University, pp 190–215

    Google Scholar 

  • Rodriguez E, Pollard BD (2003) Centimetric sea surface height accuracy using the wide-swath ocean altimeter. In: Procedings. IEEE IGARSS, Toulouse, France

    Google Scholar 

  • Smith WHF, Sandwell DT (2004) Conventional bathymetry, bathymetry from space, and geodetic altimetry. Oceanography 17(1):8–23

    Google Scholar 

  • Tournadre J, Lambin J, Steunou N (2009) Cloud and rain effects on AltiKa/SARAL Ka-band radar altimeter. Part I: modelling and mean annual data availability. IEEE Trans Geosci Remote Sens 47:6. doi:10.1109/TGRS.2008.2010130

    Google Scholar 

  • Ulaby FT, Moore RK, Fung AK (1982) Microwave remote sensing: active and passive, vol II. Addison-Wesley, Reading, MA

    Google Scholar 

  • Vincent P, Steunou N, Caubet E, Phalippou L, Rey L, Thouvenot E, Verron J (2006) AltiKa: a Ka-band altimetery payload and system for operational altimetry during the GMES period. Sensors 6:208–234

    Article  Google Scholar 

  • Walsh EJ (1982) Pulse-to-pulse correlation in satellite radar altimetry. Radio Sci 17(4):786–800

    Article  Google Scholar 

  • Wingham DJ et al (1998) CryoSat: a mission to determine fluctuations in the mass of the earth’s land and marine ice fields (proposal to the European Space Agency). University College, London

    Google Scholar 

  • Wingham DJ, Francis R, Baker S, Bouzinac C, Cullen R, DeChateau-Thierry P, Laxon S, Mallow U, Mavrocordatos C, Phalippou L, Ratier G, Rey L, Rostan F, Viau P, Wallis D (2006) CryoSat: a mission to determine the fluctuations in Earth’s land and marine ice fields. Adv Space Res 37:841–871

    Article  Google Scholar 

  • Zebker H, Goldstein R (1986) Topographic mapping from interferometric synthetic aperture radar observations. J Geophys Res 91:4993–4999

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Raney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raney, R.K., Phalippou, L. (2011). The Future of Coastal Altimetry. In: Vignudelli, S., Kostianoy, A., Cipollini, P., Benveniste, J. (eds) Coastal Altimetry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12796-0_20

Download citation

Publish with us

Policies and ethics