Skip to main content

Satellite Altimetry Applications in the Caspian Sea


The Caspian Sea is the largest continental water body on the Earth. Owing to its size and geographical location, the sea is truly a large-scale climatic and ecological indicator. One of the most important parameters of the state of the Caspian Sea is significant interannual sea level changes that puzzle the scientists of many countries. Significant water level fluctuations have serious consequences for the region, leading to displacement of thousands of shoreline inhabitants and damaging industrial constructions and infrastructure. Continuous weather-independent observations from radar altimetry are a natural choice to complement the existing in situ sea level observations and to provide new information for open sea regions that have never been covered by direct sea level observations. The Caspian Sea can be considered as an intermediate target between the Open Ocean and closed lakes; it is therefore an interesting object to evaluate the potential of satellite altimetry for enclosed water bodies.


  • Altimetry
  • Caspian Sea
  • Ice cover
  • Kara-Bogaz-Gol Bay
  • Sea level
  • Volga River
  • Wave height
  • Wind speed

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions



ALTImetry for COastal REgions


Center for Satellite Exploitation and Research


Center for Ocean Atmospheric Prediction Studies


European Centre for Medium-range Weather Forecasts


Foreign Agricultural Service


Geophysical Center of Russian Academy of Sciences


Global Climate Observing System


Geophysical Data Record


Geosat Follow-On


Global Sea Level Observing System


Global Positioning System


Global Terrestrial Observing System


Institut Français de Recherche et d’Exploitation de la MER


International Association for the promotion of co-operation with scientists from the New Independent States of the former Soviet Union


Intergovernmental Panel on Climate Change


Integrated Satellite Altimetry Data Base


Laboratoire d’Études en Géophysique et Océanographie Spatiales


Multidisciplinary Analysis of the Caspian Sea Ecosystem


Moderate Resolution Imaging Spectroradiometer


Mean Sea Surface


National Center for Environmental Prediction


National Oceanic and Atmospheric Administration


Radar Altimeter Database System


Root Mean Square


Radar Altimeter


Scanning Multichannel Microwave Radiometer


Sea Surface Height


Special Sensor Microwave/Imager




Toulouse Unstructured Grid Ocean model 2D


US Department of Agriculture

WGS 84:

World Geodetic System 1984


  • Aladin N, Crétaux J-F, Plotnikov IS, Kouraev AV, Smurov AO, Cazenave A, Egorov AN, Papa F (2005) Modern hydro-biological state of the Small Aral Sea. Environmetrics 16(4):375–392

    CrossRef  Google Scholar 

  • Birkett CM (1995) The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J Geophys Res 100:25179–25204. doi:10.1029/95JC02125

    CrossRef  Google Scholar 

  • Birkett CM (2000) Synergistic remote sensing of lake Chad: variability of basin inundation. Remote Sens Environ 72:218–236

    CrossRef  Google Scholar 

  • Buharizin PI (2003) Obzor ledovyh usloviy v severnoy chasti Kaspiyskogo morya i v nizovyah Volgi v zimniy period 2001/2002 gg. (Review of ice conditions in the northern part of the Caspian Sea and in the lower Volga in winter 2001/02). In: Materials for the state report on environmental conditions of the Russian Federation for the Astrakhan region. OOO TsNTEP, Astrakhan (in Russian)

    Google Scholar 

  • Buharizin PI, Vasyanin MF, Kalinichenko LA (1992) Metod kratkosrochnogo prognoza polozheniya kromki splochennyh l dov na Severnom Kaspii. (A method for short-term forecasting of the pack ice boundary in the Northern Caspian.) Meteorologiya i gidrologiya (Meteorol Hydrol) 4:74–81, Moscow (in Russian)

    Google Scholar 

  • Cazenave A, Bonnefond P, Dominh K (1997) Caspian Sea level from Topex/Poseidon altimetry: level now falling. Geophys Res Lett 24:881–884

    CrossRef  Google Scholar 

  • COAPS web site on Scatterometry and ocean vector winds (accessed January 2009).

  • Coe MT, Birkett CM (2005) Water resources in the lake Chad basin: prediction of river discharge and lake height from satellite radar altimetry. Water Resour Res 40(10). doi:10.1029/2003WR002543

    Google Scholar 

  • Crétaux J-F, Kouraev AV, Papa F, Bergé-Nguyen M, Cazenave A, Aladin NV, Plotnikov IS (2005) Water balance of the Big Aral Sea from satellite remote sensing and in situ observations. J Great Lakes Res 31(4):520–534

    CrossRef  Google Scholar 

  • Crétaux J-F, Birkett C (2006) Lake studies from satellite altimetry. Geosciences CR. doi:10.1016/j.crte.2006.08.002

    Google Scholar 

  • Crétaux J-F, Letolle R, Calmant S (2009a) Investigations on Aral Sea regressions from Mirabilite deposits and remote sensing. Aquat Geochem. doi:10.1007/s10498-008-9051-2, 2009

    Google Scholar 

  • Crétaux J-F, Calmant S, Romanovski V, Shibuyin A, Lyard F, Bergé-Nguyen M, Cazenave A, Hernandez F, Perosanz F (2009b) An absolute calibration site for radar altimeter in the continental area: lake Issykkul in Central Asia. J Geodesy. doi:10.1007/s00190-008-0289-7, 2009

    Google Scholar 

  • Frappart F, Seyler F, Martinez JM, Leon J, Cazenave A (2005) Determination of the water volume in the Negro River sub basin by combination of satellite and in situ data. Remote Sens Environ 99:387–399

    CrossRef  Google Scholar 

  • Ginzburg AI, Kostianoy AG, Sheremet NA (2005) Sea surface temperature. In: Kostianoy AG, Kosarev AN (eds) The Caspian Sea environment. Springer-Verlag, Berlin/Heidelberg/New York, pp 59–81

    CrossRef  Google Scholar 

  • Ginzburg AI, Kostianoy AG, Soloviev DM, Sheremet NA (2006) Frontal zone of upwelling near the eastern coast of the Caspian Sea as inferred from satellite data. Issled Zemli iz kosmosa 4:3–12 (in Russian)

    Google Scholar 

  • GCOS 2006, Systematic observation requirements for satellite-based products for climate – supplemental details to the GCOS implementation plan, GCOS 107 (WMO/TD No. 1338)

    Google Scholar 

  • Hydroweb web site (accessed January 2009):

  • IFREMER CERSAT web page (accessed January 2009).

  • Kabatchenko IM (2006) Modelling of wind-induced waves. Numerical calculations for studies of climate and designing hydrotechnical constructions. Dr.Sc. dissertation, avtoreferat, Moscow (In Russian)

    Google Scholar 

  • Kosarev AN, Yablonskaya EA (1994) The Caspian Sea. SPB Academic Publishing, The Hague, 259pp

    Google Scholar 

  • Kosarev AN (2005) Physico-geographical conditions of the Caspian Sea. In: Kostianoy AG, Kosarev AN (eds) The Caspian Sea Environment, Springer-Verlag, Berlin/Heidelberg/New York, pp 5–31. doi: 10.1007/698_5_002

    Google Scholar 

  • Kosarev AN, Kostianoy AG (2005) Kara-Bogaz-Gol Bay. In: Kostianoy AG, Kosarev AN (eds) The Caspian Sea Environment. Springer-Verlag, Berlin/Heidelberg/New York, pp 211–221. doi: 10.1007/698_5_011

    CrossRef  Google Scholar 

  • Kosarev AN, Kostianoy AG, Zonn IS (2009) Kara-Bogaz-Gol Bay: physical and chemical evolution. Aquat Geochem 15(1–2), Special Issue: Saline Lakes and Global Change. pp 223–236. doi:10.1007/s10498-008-9054-z

    Google Scholar 

  • Kostianoy AG, Zavialov PO, Lebedev SA (2004) What do we know about dead, dying and endangered lakes and seas? In: Nihoul JCJ, Zavialov PO, Micklin PhP (eds) Dying and dead seas, NATO ARW/ASI Series. Kluwer, Dordrecht, pp 1–48

    Google Scholar 

  • Kostianoy AG, Kosarev AN (eds) (2005) The Caspian Sea environment. The handbook of environmental chemistry. vol 5: water pollution, Part 5P. Springer-Verlag, Berlin/Heidelberg/New York, 271pp

    Google Scholar 

  • Kostianoy AG, Terziev FS, Ginzburg AI, Zaklinsky GV, Filippov YuG, Lebedev SA, Nezlin NP, Sheremet NA (2008) The southern seas. In: Assessment report on climate change and its consequences in Russian Federation. vol 2: Consequences of the climate change. Research Center “Planeta,” Moscow, pp 149–167 (in Russian)

    Google Scholar 

  • Kouraev AV (1998) Hydrological conditions of the Northern Caspian during recent sea level rise. PhD dissertation, MGU, Moscow, 234pp (In Russian)

    Google Scholar 

  • Kouraev AV, Papa F, Buharizin PI, Cazenave A, Crétaux J-F, Dozortseva J, Remy F (2003) Ice cover variability in the Caspian and Aral Seas from active and passive satellite microwave data. Polar Res 22(1):43–50

    CrossRef  Google Scholar 

  • Kouraev AV, Papa F, Mognard NM, Buharizin PI, Cazenave A, Crétaux J-F, Dozortseva J, Remy F (2004a) Synergy of active and passive satellite microwave data for the study of first-year sea ice in the Caspian and Aral Seas. IEEE Trans Geosci Remote Sens (TGARS) 42(10):2170–2176

    CrossRef  Google Scholar 

  • Kouraev AV, Papa F, Mognard NM, Buharizin PI, Cazenave A, Crétaux J-F, Dozortseva J, Remy F (2004b) Sea ice cover in the Caspian and Aral Seas from historical and satellite data. J Mar Syst 47:89–100

    CrossRef  Google Scholar 

  • Kouraev AV, Zakharova EA, Samain O, Mognard-Campbell N, Cazenave A (2004) Ob’ river discharge from TOPEX/Poseidon satellite altimetry data. Remote Sens Environ 93:238–245

    CrossRef  Google Scholar 

  • Kouraev AV, Semovski SV, Shimaraev MN, Mognard NM, Legresy B, Remy F (2007a) Ice regime of lake Baikal from historical and satellite data: influence of thermal and dynamic factors. Limnol Oceanogr 52(3):1268–1286

    CrossRef  Google Scholar 

  • Kouraev AV, Semovski SV, Shimaraev MN, Mognard NM, Legresy B, Remy F (2007b) Observations of lake Baikal ice from satellite altimetry and radiometry. Remote Sens Environ 108(3):240–253

    CrossRef  Google Scholar 

  • Kouraev AV, Shimaraev MN, Buharizin PI, Naumenko MA, Crétaux J-F, Mognard NM, Legrésy B, Rémy F (2008) Ice and snow cover of continental water bodies from simultaneous radar altimetry and radiometry observations. Survey in geophysics – thematic issue “Hydrology from space.” doi:10.1007/s10712-008-9042-2

    Google Scholar 

  • Kouraev AV, Kostianoy AG, Lebedev SA (2009) Ice cover and sea level of the Aral Sea from satellite altimetry and radiometry (1992–2006). J Mar Syst 76(3):272–286. doi:10.1016/j.jmarsys.2008.03.01610.1016/j.jmarsys.2008.03.016 Available online 12 August 2008

    Google Scholar 

  • Krapivin VF, Phillips GW (2001) A remote sensing-based expert system to study the Aral-Caspienne aquageosystem water regime. Remote Sens Environ 75(2):201–215

    CrossRef  Google Scholar 

  • Krasnozhon GF, Lyubomirova KS (1987) Izucheniye ledovogo rezhima Severnogo Kaspiya po dannym meteorologicheskih sputnikov Zemli. (Study of ice cover in the northern Caspian from meteorological satellites.) Issledovaniye Zemli iz kosmosa (Study of Earth from Space) 5:27–32, Moscow (in Russian)

    Google Scholar 

  • Lebedev SA, Kostianoy AG (2005) Satellite altimetry of the Caspian Sea. Sea, Moscow, 366pp (in Russian)

    Google Scholar 

  • Lebedev SA, Kostianoy AG (2008a) Investigation of the Caspian Sea surface dynamics based on the satellite altimetry and drifter data. Abstracts, 37th COSPAR scientific assembly Montreal, Canada, 13–20 July 2008, Abstract CD, ISSN 1815-5619, A21-0033-08

    Google Scholar 

  • Lebedev SA, Kostianoy AG (2008b) Integrated using of satellite altimetry in investigation of meteorological, hydrological and hydrodynamic regime of the Caspian Sea. J Terr Atmos Oceanic Sci 19(1–2):71–82

    CrossRef  Google Scholar 

  • Maheu C, Cazenave A, Mechoso R (2003) Water level fluctuations in the La Plata basin (South America) from Topex/Poseidon altimetry. Geophys Res Lett 30(3):1143–1146

    CrossRef  Google Scholar 

  • Medvedev PP, Lebedev SA, Tyupkin YS (1997) An integrated data base of altimetric satellite for fundamental geosciences research. In: Proceedings of the first East-European symposium on advances in data bases and information systems (ADBIS’97), St. Petersburg, Russia, 2–5 September 1997, St. Petersburg University, St. Petersburg, vol 2, pp 95–96

    Google Scholar 

  • Mercier F, Zanife O-Z (2006) Improvement of the TOPEX/Poseidon altimetric data processing for hydrological purposes (CASH project). In: Proceedings of the symposium on 15 years of progress in radar altimetry, 13–18 March 2006, Venice, Italy

    Google Scholar 

  • Mercier F, Cazenave A, Maheu C (2002) Interannual lake level fluctuations in Africa (1993–1999) from Topex-Poseidon: connections with ocean-atmosphere interactions over the Indian Ocean. Global Planet Change 32:141–163. doi:10.1016/S0921-8181(01)00139-4

    CrossRef  Google Scholar 

  • Morris GS, Gill SK (1994a) Variation of Great Lakes water levels derived from GEOSAT altimetry. Water Resour Res 30:1009–1017. doi:10.1029/94WR00064

    CrossRef  Google Scholar 

  • Morris GS, Gill SK (1994b) Evaluation of the TOPEX/POSEIDON altimeter system over the Great Lakes. J Geophys Res 99:24527–24540. doi:10.1029/94JC01642

    CrossRef  Google Scholar 

  • Pobedonostsev SV, Abuzyarov ZK, Kopeikina TN (2005) On the quality of the Caspian Sea level observations (O kachestve nablyudeniy za urovnem Kaspiyskogo morya). In: proceedings of the State Hydrometeorological Center of the Russian Federation, issue 339, Sea and river hydrological calculations and foirecasts (Morskiye i rechniye gidrologicheskiye raschety i prognozy) (in Russian)

    Google Scholar 

  • Proceedings of the 2nd space for hydrology workshop: surface water storage and runoff: modeling, in-situ data and remote sensing. 12–14 November 2007, Geneva, Switzerland Hydrospace ‘07 Workshop, European Space Agency, WPP-280 on CD-ROM

    Google Scholar 

  • Roblou L, Lyard F, Le Henaff M, Maraldi C (2007) X-track, a new processing tool for altimetry in coastal oceans. In: ESA ENVISAT symposium, Montreux, Switzerland, 23–27 April 2007, ESA SP-636

    Google Scholar 

  • Schrama E, Scharroo R, Naeije M (2000) Radar altimeter database system (RADS): towards a generic multi-satellite altimeter database system. Delft Institute for Earth-Oriented Space Research, Delft University of Technology, The Netherlands, 98

    Google Scholar 

  • Shum C, Yi Y, Cheng K, Kuo C, Braun A, Calmant S, Chambers D (2003) Calibration of Jason-1 altimeter over lake Erie. Mar Geod 26(3–4):335–354

    CrossRef  Google Scholar 

  • State water cadaster of the USSR (1930–1993). Issue 2, Marine yearbooks, Vol I, The Caspian Sea, mouths of Volga, Terek, Sulak and Kura rivers. Glavnoye Upravleniye gidrometeorologicheskoy sluzhby pri Sovete Ministrov SSSR. UGMS AzSSR (in Russian)

    Google Scholar 

  • Terziev FS, Kosarev AN, Kerimov AA (eds) (1992) Gidrometeorologiya i gidrohimiya morey. (Hydrometeorology and hydrochemistry of seas.) vol VI: Caspian Sea, no. 1: Hydrometeorological conditions. Gidrometeoizdat, St. Petersburg (in Russian)

    Google Scholar 

  • USDA Reservoir Database web site (accessed January 2009).

  • Vasiliev AS, Lapshin VB, Lupachev YuV, Medvedev PP, Pobedonostsev SV (2002) Research of the Caspian Sea level by satellite altimetric measurements. In: Investigations of the oceans and seas, Proceedings of State Oceanographic Institute, Hydrometeoizdat, St. Petersburg, 208, pp 277–292 (in Russian)

    Google Scholar 

  • Vignudelli S, Snaith HM, Cipollini P, Venuti F, Lyard F, Crétaux JF, Birol F, Bouffard J, Roblou L, Kostianoy A, Ginzburg A, Sheremet N, Kuzmina E, Lebedev S, Sirota A, Medvedev D, Khlebnikova S, Mamedov R, Ismatova K, Alyev A, Nabiyev T (2007) ALTICORE – a consortium serving European Seas with Coastal Altimetry. In: proceedings, XXIV International Union of Geodesy and Geophysics (IUGG) General Assembly, Perugia, Italy, 2–13 July 2007

    Google Scholar 

  • Vignudelli S, Testut L, Calzas M, Mamedov R, Sultanov M, Alyev A, Crétaux J-F, Kostianoy A (2008) Installation of pilot sea level monitoring station for satellite altimetry calibration/validation in the Caspian Sea at Absheron port, Baku, Azerbaijan (8–13 June 2008). Vestnik Kaspiya (Caspian Sea Bulletin), N 4, pp 40–55

    Google Scholar 

  • Zakharova EA, Kouraev AV, Cazenave A, Seyler F (2006) Amazon river discharge estimated from Topex/Poseidon satellite water level measurements. Comp Rend Geosci 338(3):188–196

    CrossRef  Google Scholar 

  • Zakharova EA, Kouraev AV, Polikarpov I, Al-Yamani F, Crétaux J-F (2007) Radar altimetry for studies of large river basins: hydrological regime of the Euphrates-Tigris Rivers. In: Second Space for hydrology workshop “surface water storage and runoff: modelling, in-situ data and remote sensing,” Geneva (Switzerland), 12–14 November 2007

    Google Scholar 

Download references


We are grateful to the Centre de Topographie des Océans et de l’Hydrosphère (CTOH, at LEGOS (Toulouse, France) for providing the initial altimetric data. MODIS images of 11 June 2005 (used for the definition of coastline position) and 3 December 2001 are courtesy of MODIS Rapid Response Project at NASA/GSFC. This work was partially supported by the Russian Foundation for Basic Research grants No. 10-05-00097-a, 08-05-97016, 10-01-00806, 10-05-01123.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. V. Kouraev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kouraev, A.V. et al. (2011). Satellite Altimetry Applications in the Caspian Sea. In: Vignudelli, S., Kostianoy, A., Cipollini, P., Benveniste, J. (eds) Coastal Altimetry. Springer, Berlin, Heidelberg.

Download citation