Skip to main content

CT Perfusion (CTP)

  • Chapter
  • First Online:
Acute Ischemic Stroke

Abstract

Acute stroke is a common cause of morbidity and mortality worldwide: it is the third leading cause of death in the United States (responsible for approximately 1 in 15 deaths in 2001) and affects approximately 700,000 individuals within the United States annually [1]. The ability to treat patients in the acute setting with thrombolytics has created a pressing need for improved detection and evaluation of acute stroke, with a premium placed on rapid acquisition and generation of data that are practically useful in the clinical setting. Recanalization methods for acute ischemic stroke remain limited to a restricted time window, since intravenous (IV) and intra-arterial (IA) thrombolysis carry hemorrhagic risk that increases with time-postictus [2–4]. Clinical exam and unenhanced CT, the existing imaging standard for acute stroke, are limited in their ability to identify individuals likely to benefit from successful recanalization [3, 5–11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anon. Heart Disease and Stroke Statistics – 2004 Update. 2003, Dallas: American Heart Association.

    Google Scholar 

  2. NINDS, G., Tissue plasminogen activator for acute ischemic stroke. New Engl J Med, 1995. 333: p. 1581-87.

    Article  Google Scholar 

  3. Furlan, A., et al., Intra-arterial prourokinase for acute ischemic stroke. JAMA, 1999. 282: p. 2003-11.

    Article  PubMed  CAS  Google Scholar 

  4. Marler, J.R., et al., Early stroke treatment associated with better outcome: the NINDS rt-PA stroke study. Neurology, 2000. 55(11): p. 1649-55.

    Article  PubMed  CAS  Google Scholar 

  5. del Zoppo, G.J., et al., Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann Neurol, 1992. 32(1): p. 78-86.

    Article  PubMed  Google Scholar 

  6. Hacke, W., et al., Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA, 1995. 274(13): p. 1017-25.

    Google Scholar 

  7. Madden, K.P., et al., Accuracy of initial stroke subtype diagnosis in the TOAST study. Trial of ORG 10172 in Acute Stroke Treatment. Neurology, 1995. 45(11): p. 1975-9.

    Google Scholar 

  8. Ezzeddine, M.A., et al., CT angiography with whole brain perfused blood volume imaging: added clinical value in the assessment of acute stroke. Stroke, 2002. 33(4): p. 959-66.

    Article  PubMed  Google Scholar 

  9. Dubey, N., et al., Early computed tomography hypodensity predicts hemorrhage after intravenous tissue plasminogen activator in acute ischemic stroke. J Neuroimaging, 2001. 11(2): p. 184-8.

    Article  PubMed  CAS  Google Scholar 

  10. Lev, M.H. and S.J. Nichols, Computed tomographic angiography and computed tomographic perfusion imaging of hyperacute stroke. Top Magn Reson Imaging, 2000. 11(5): p. 273-87.

    Article  PubMed  CAS  Google Scholar 

  11. Wardlaw, J., et al., Can stroke physicians and neuroradiologists identify signs of early cerebral infarction on CT? J Neurol Neursosurg Psychiatry, 1999. 67: p. 651-653.

    Article  CAS  Google Scholar 

  12. Schaefer, P.W., et al., Diffusion magnetic resonance imaging of acute ischemic stroke. Semin Roentgenol, 2002. 37(3): p. 219-29.

    Article  PubMed  Google Scholar 

  13. Schaefer, P.W., P.E. Grant, and G. Gonzalez, Diffusion-weighted MR imaging of the brain. Radiology, 2000. 217: p. 331-45.

    PubMed  CAS  Google Scholar 

  14. Lev, M.H., et al., CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr, 2001. 25(4): p. 520-8.

    Article  PubMed  CAS  Google Scholar 

  15. Lev, M.H. and R.G. Gonzalez, CT angiography and CT perfusion imaging, in Brain mapping: the methods, A.W. Toga and J.C. Mazziotta, Editors. 2002, San Diego: Academic Press. p. 427-84.

    Google Scholar 

  16. Wildermuth, S., et al., Role of CT angiography in patient selection for thrombolytic therapy in acute hemispheric stroke. Stroke, 1998. 29(5): p. 935-8.

    Article  PubMed  CAS  Google Scholar 

  17. Knauth, M., et al., Potential of CT angiography in acute ischemic stroke [see comments]. Am J Neuroradiol, 1997. 18(6): p. 1001-10.

    PubMed  CAS  Google Scholar 

  18. Schellinger, P.D., J.B. Fiebach, and W. Hacke, Imaging-based decision making in thrombolytic therapy for ischemic stroke: present status. Stroke, 2003. 34(2): p. 575-83.

    Article  PubMed  Google Scholar 

  19. Warach, S., Tissue viability thresholds in acute stroke: the 4-factor model. Stroke, 2001. 32(11): p. 2460-1.

    PubMed  CAS  Google Scholar 

  20. Axel, L., Cerebral blood flow determination by rapid-sequence computed tomography. Radiology, 1980. 137: p. 679-86.

    PubMed  CAS  Google Scholar 

  21. Fox, S.H., et al., Future directions in CT technology. Neuroimaging Clin N Am, 1998. 8(3): p. 497-513.

    PubMed  CAS  Google Scholar 

  22. Smith, W.S., et al., Safety and feasibility of a CT protocol for acute stroke: combined CT, CT angiography, and CT perfusion imaging in 53 consecutive patients. AJNR Am J Neuroradiol, 2003. 24(4): p. 688-90.

    PubMed  Google Scholar 

  23. Gleason, S., et al., Potential influence of acute CT on inpatient costs in patients with ischemic stroke. Acad Radiol, 2001. 8(10): p. 955-64.

    Article  PubMed  CAS  Google Scholar 

  24. Berzin, T., et al., CT perfusion imaging versus MR diffusion weighted imaging: prediction of final infarct size in hyperacute stroke [abstract]. Stroke, 2001. 32: p. 317.

    Google Scholar 

  25. Bove, P., et al. CT perfusion imaging improves infarct conspicuity in hyperacute stroke. 2001. Ft Lauderdale, FL: Stroke.

    Google Scholar 

  26. Cenic, A., et al., Dynamic CT measurement of cerebral blood flow: a validation study. AJNR Am J Neuroradiol, 1999. 20(1): p. 63-73.

    PubMed  CAS  Google Scholar 

  27. Hunter, G.J., et al., Assessment of cerebral perfusion and arterial anatomy in hyperacute stroke with three-dimensional functional CT: early clinical results. Am J Neuroradiol, 1998. 19: p. 29-37.

    PubMed  CAS  Google Scholar 

  28. Klotz, E. and M. Konig, Perfusion measurements of the brain: using the dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. Eur J Radiol, 1999. 30(3): p. 170-184.

    Article  PubMed  CAS  Google Scholar 

  29. Koenig, M., et al., Perfusion CT of the brain: diagnostic approach for early detection of ischemic stroke. Radiology, 1998. 209(1): p. 85-93.

    PubMed  CAS  Google Scholar 

  30. Koroshetz, W.J. and R.G. Gonzales, Imaging stroke in progress: magnetic resonance advances but computed tomography is poised for counterattack. Ann Neurol, 1999. 46(4): p. 556-8.

    Article  PubMed  CAS  Google Scholar 

  31. Koroshetz, W.J. and M.H. Lev, Contrast computed tomography scan in acute stroke: “You can’t always get what you want but you get what you need”. Ann Neurol, 2002. 51(4): p. 415-6.

    Article  PubMed  Google Scholar 

  32. Lee, K.H., et al., Usefulness of triphasic perfusion computed tomography for intravenous thrombolysis with tissue-type plasminogen activator in acute ischemic stroke. Arch Neurol, 2000. 57(7): p. 1000-8.

    Article  PubMed  CAS  Google Scholar 

  33. Lee, K.H., et al., Triphasic perfusion computed tomography in acute middle cerebral artery stroke: a correlation with angiographic findings. Arch Neurol, 2000. 57(7): p. 990-9.

    Article  PubMed  CAS  Google Scholar 

  34. Lev, M.H., et al., Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: prediction of final infarct volume and clinical outcome. Stroke, 2001. 32(9): p. 2021-8.

    Article  PubMed  CAS  Google Scholar 

  35. Nabavi, D.G., et al., Quantitative assessment of cerebral hemodynamics using CT: stability, accuracy, and precision studies in dogs. J Comput Assist Tomogr, 1999. 23(4): p. 506-15.

    Article  PubMed  CAS  Google Scholar 

  36. Nabavi, D.G., et al., CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology, 1999. 213(1): p. 141-9.

    PubMed  CAS  Google Scholar 

  37. Nabavi, D.G., et al., Perfusion mapping using computed tomography allows accurate prediction of cerebral infarction in experimental brain ischemia. Stroke, 2001. 32(1): p. 175-83.

    Article  PubMed  CAS  Google Scholar 

  38. Ponzo, J., et al. Evaluation of collateral circulation in acute stroke patients using CT angiography. in Stroke [abstract]. 1998. Orlando, FL.

    Google Scholar 

  39. Roberts, H.C., W.P. Dillon, and W.S. Smith, Dynamic CT perfusion to assess the effect of carotid revascularization in chronic cerebral ischemia. AJNR Am J Neuroradiol, 2000. 21(2): p. 421-5.

    PubMed  CAS  Google Scholar 

  40. Roberts, H.C., et al., Multisection dynamic CT perfusion for acute cerebral ischemia: the “toggling-table” technique. AJNR Am J Neuroradiol, 2001. 22(6): p. 1077-80.

    PubMed  CAS  Google Scholar 

  41. Roberts, H.C., T.P. Roberts, and W.P. Dillon, CT perfusion flow assessment: “up and coming” or “off and running”? AJNR Am J Neuroradiol, 2001. 22(6): p. 1018-9.

    PubMed  CAS  Google Scholar 

  42. Rother, J., et al., Hemodynamic assessment of acute stroke using dynamic single-slice computed tomographic perfusion imaging. Arch Neurol, 2000. 57(8): p. 1161-6.

    Article  PubMed  CAS  Google Scholar 

  43. Shrier, D., et al., CT angiography in the evaluation of acute stroke. Am J Neuroradiol, 1997. 18(6): p. 1011-20.

    PubMed  CAS  Google Scholar 

  44. Swap, C., et al. Degree of oligemia by perfusion-weighted CT and risk of hemorrhage after IA thrombolysis. in Stroke - Proceedings of the 27th International Conference on Stroke and Cerebral Circulation. 2002. San Antonio, TX.

    Google Scholar 

  45. Wintermark, M., et al., Using 80 kVp versus 120 kVp in perfusion CT measurement of regional cerebral blood flow. AJNR Am J Neuroradiol, 2000. 21(10): p. 1881-4.

    PubMed  CAS  Google Scholar 

  46. Wintermark, M., et al., Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. AJNR Am J Neuroradiol, 2001. 22(5): p. 905-14.

    PubMed  CAS  Google Scholar 

  47. Wintermark, M., et al., Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol, 2002. 51(4): p. 417-32.

    Article  PubMed  Google Scholar 

  48. Eastwood, J.D., et al., CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology, 2002. 222(1): p. 227-36.

    Article  PubMed  Google Scholar 

  49. Albers, G.W., Expanding the window for thrombolytic therapy in acute stroke. The potential role of acute MRI for patient selection. Stroke, 1999. 30(10): p. 2230-7.

    CAS  Google Scholar 

  50. Barber, P.A., et al., Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet, 2000. 355(9216): p. 1670-4.

    CAS  Google Scholar 

  51. Broderick, J.P., et al., Finding the most powerful measures of the effectiveness of tissue plasminogen activator in the NINDS tPA stroke trial [In Process Citation]. Stroke, 2000. 31(10): p. 2335-41.

    Article  PubMed  CAS  Google Scholar 

  52. Schellinger, P.D., et al., Monitoring intravenous recombinant tissue plasminogen activator thrombolysis for acute ischemic stroke with diffusion and perfusion MRI. Stroke, 2000. 31(6): p. 1318-28.

    Article  PubMed  CAS  Google Scholar 

  53. Tong, D., et al., Correlation of perfusion- and diffusion weighted MRI with NIHSS Score in acute (<6.5 hour) ischemic stroke. Stroke, 1998. 29: p. 2673.

    Google Scholar 

  54. Warach, S., New imaging strategies for patient selection for thrombolytic and neuroprotective therapies. Neurology, 2001. 57(Suppl 2): p. S48-52.

    Article  PubMed  CAS  Google Scholar 

  55. von Kummer, R., et al., Interobserver agreement in assessing early CT signs of middle cerebral artery infarction. Am J Neuroradiol, 1996. 17: p. 1743-8.

    Google Scholar 

  56. Grotta, J.C., et al., Agreement and variability in the interpretation of early CT changes in stroke patients qualifying for intravenous rtPA therapy [see comments]. Stroke, 1999. 30(8): p. 1528-33.

    Article  PubMed  CAS  Google Scholar 

  57. Lev, M.H., CT versus MR for acute stroke imaging: is the “obvious” choice necessarily the correct one? AJNR Am J Neuroradiol, 2003. 24(10): p. 1930-1.

    PubMed  Google Scholar 

  58. Lev, M.H., et al., CT or MRI for imaging patients with acute stroke: visualization of “tissue at risk”? Stroke, 2002. 33(12): p. 2736-7.

    Article  PubMed  Google Scholar 

  59. Wintermark, M., et al., Acute stroke imaging research roadmap. Stroke, 2008. 39(5): p. 1621-8.

    Article  PubMed  Google Scholar 

  60. Wintermark, M., et al., Acute stroke imaging research roadmap. AJNR Am J Neuroradiol, 2008. 29(5): p. e23-30.

    Article  PubMed  Google Scholar 

  61. White, H., et al., Ischemic stroke subtype incidence among whites, blacks, and Hispanics: the Northern Manhattan Study. Circulation, 2005. 111(10): p. 1327-31.

    Article  PubMed  Google Scholar 

  62. Shapiro, M.D., et al., Multidetector computed tomography for the detection of left atrial appendage thrombus: a comparative study with transesophageal echocardiography. J Comput Assist Tomogr, 2007. 31(6): p. 905-9.

    Article  PubMed  Google Scholar 

  63. Kim, Y.Y., et al., Left atrial appendage filling defects identified by multidetector computed tomography in patients undergoing radiofrequency pulmonary vein antral isolation: a comparison with transesophageal echocardiography. Am Heart J, 2007. 154(6): p. 1199-205.

    Article  PubMed  Google Scholar 

  64. von Kummer, R., et al., Acute stroke: usefulness of early CT findings before thrombolytic therapy [see comments]. Radiology, 1997. 205(2): p. 327-33.

    Google Scholar 

  65. von Kummer, R., Early major ischemic changes on computed tomography should preclude use of tissue plasminogen activator. Stroke, 2003. 34(3): p. 820-1.

    Article  Google Scholar 

  66. Fiorelli, M. and R. von Kummer, Early ischemic changes on computed tomography in patients with acute stroke. JAMA, 2002. 287(18): p. 2361-2; author reply 2362.

    Google Scholar 

  67. Mullins, M.E., et al., Influence of availability of clinical history on detection of early stroke using unenhanced CT and diffusion-weighted MR imaging. AJR Am J Roentgenol, 2002. 179(1): p. 223-8.

    PubMed  Google Scholar 

  68. Lev, M., et al., Acute stroke: Improved nonenhanced CT detection – benefits of soft-copy interpretation by using variable window width and center level settings. Radiology, 1999. 213: p. 150-5.

    PubMed  CAS  Google Scholar 

  69. Fiorelli, M., et al., Computed tomography findings in the first few hours of ischemic stroke: implications for the clinician. J Neurol Sci, 2000. 173(1): p. 10-7.

    Article  PubMed  CAS  Google Scholar 

  70. Hamberg, L.M., et al., Measurement of cerebral blood volume with subtraction three-dimensional functional CT. AJNR Am J Neuroradiol, 1996. 17(10): p. 1861-9.

    PubMed  CAS  Google Scholar 

  71. Bae, K.T., H.Q. Tran, and J.P. Heiken, Multiphasic injection method for uniform prolonged vascular enhancement at CT angiography: pharmacokinetic analysis and experimental porcine model. Radiology, 2000. 216(3): p. 872-80.

    PubMed  CAS  Google Scholar 

  72. Fleischmann, D., et al., Improved uniformity of aortic enhancement with customized contrast medium injection protocols at CT angiography. Radiology, 2000. 214(2): p. 363-71.

    PubMed  CAS  Google Scholar 

  73. Bae, K.T., H.Q. Tran, and J.P. Heiken, Uniform vascular contrast enhancement and reduced contrast medium volume achieved by using exponentially decelerated contrast material injection method. Radiology, 2004. 231(3): p. 732-6.

    Article  PubMed  Google Scholar 

  74. Fleischmann, D. and K. Hittmair, Mathematical analysis of arterial enhancement and optimization of bolus geometry for CT angiography using the discrete fourier transform. J Comput Assist Tomogr, 1999. 23(3): p. 474-84.

    Article  PubMed  CAS  Google Scholar 

  75. Schaefer, P.W., et al., First-pass quantitative CT perfusion identifies thresholds for salvageable penumbra in acute stroke patients treated with intra-arterial therapy.[see comment]. AJNR Am J Neuroradiol, 2006. 27(1): p. 20-5.

    Google Scholar 

  76. Schaefer, P.W., et al., Avoiding “pseudo-reversibility” of CT-CBV infarct core lesions in acute stroke patients after thrombolytic therapy. The need for algorithmically “delay-corrected” CT perfusion map postprocessing software. Stroke, 2009. 40: p. 2875-8.

    Google Scholar 

  77. Miles, K.A., Perfusion CT for the assessment of tumour vascularity: which protocol? Br J Radiol, 2003. 76 Spec No 1: p. S36-42.

    Google Scholar 

  78. Konstas, A.A., et al., Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 2: technical implementations. AJNR Am J Neuroradiol, 2009. 30(5): p. 885-92.

    Article  PubMed  CAS  Google Scholar 

  79. Youn, S.W., et al., Perfusion CT of the brain using 40-mm-wide detector and toggling table technique for initial imaging of acute stroke. AJR Am J Roentgenol, 2008. 191(3): p. W120-6.

    Article  PubMed  Google Scholar 

  80. Furtado, A.D., B.C. Lau, E. Vittinghoff, W.P. Dillon, W.S. Smith, T. Rigby, L. Boussel, M. Wintermark, Optimal brain perfusion CT coverage in patients with acute middle cerebral artery stroke. Am J Neuroradiol, 2009. 31: p. 691-5.

    Google Scholar 

  81. Aksoy, F.G. and M.H. Lev, Dynamic contrast-enhanced brain perfusion imaging: technique and clinical applications. Semin Ultrasound CT MR, 2000. 21(6): p. 462-77.

    Article  PubMed  CAS  Google Scholar 

  82. Eastwood, J.D., M.H. Lev, and J.M. Provenzale, Perfusion CT with iodinated contrast material. AJR Am J Roentgenol, 2003. 180(1): p. 3-12.

    PubMed  Google Scholar 

  83. Siebert, E., et al., 320-slice CT neuroimaging: initial clinical experience and image quality evaluation. Br J Radiol, 2009. 82(979): p. 561-70.

    Article  PubMed  CAS  Google Scholar 

  84. Klingebiel, R., et al., 4-D Imaging in cerebrovascular disorders by using 320-slice CT: feasibility and preliminary clinical experience. Acad Radiol, 2009. 16(2): p. 123-9.

    Article  PubMed  Google Scholar 

  85. Wintermark, M., et al., Dynamic perfusion CT: optimizing the temporal resolution and contrast volume for calculation of perfusion CT parameters in stroke patients. AJNR Am J Neuroradiol, 2004. 25(5): p. 720-9.

    PubMed  Google Scholar 

  86. Wintermark, M. and M.H. Lev, FDA investigates the safety of brain perfusion CT. AJNR Am J Neuroradiol. 31(1): p. 2-3.

    Google Scholar 

  87. Smith, A.B., et al., Radiation dose-reduction strategies for neuroradiology CT protocols. AJNR Am J Neuroradiol, 2007. 28(9): p. 1628-32.

    Article  PubMed  CAS  Google Scholar 

  88. Hamberg, L.M., et al., Multi-detector row CT: radiation dose characteristics. Radiology, 2003. 226(3): p. 762-72.

    Article  PubMed  Google Scholar 

  89. Imanishi, Y., et al., Radiation-induced temporary hair loss as a radiation damage only occurring in patients who had the combination of MDCT and DSA. Eur Radiol, 2005. 15(1): p. 41-6.

    Article  PubMed  Google Scholar 

  90. Mnyusiwalla, A., R.I. Aviv, and S.P. Symons, Radiation dose from multidetector row CT imaging for acute stroke. Neuroradiology, 2009. 51(10): p. 635-40.

    Article  PubMed  Google Scholar 

  91. Cohnen, M., et al., Radiation exposure of patients in comprehensive computed tomography of the head in acute stroke. AJNR Am J Neuroradiol, 2006. 27(8): p. 1741-5.

    PubMed  CAS  Google Scholar 

  92. Kudo, K., et al., Quantitative cerebral blood flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: comparison with H2(15)O positron emission tomography. AJNR Am J Neuroradiol, 2003. 24(3): p. 419-26.

    PubMed  Google Scholar 

  93. Takasawa, M., et al., How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET. Stroke, 2008. 39(3): p. 870-7.

    Article  PubMed  Google Scholar 

  94. Coutts, S.B., et al., Reliability of assessing percentage of diffusion-perfusion mismatch. Stroke, 2003. 34(7): p. 1681-3.

    Article  PubMed  Google Scholar 

  95. Roccatagliata, L., et al. Estimating the size of ischemic regions on CT perfusion maps in acute stroke: is freehand visual segmentation sufficient? in Proceedings of the 89th Scientific Assembly and Annual Meeting of the Radiological Society of North America. 2003. Chicago, IL.

    Google Scholar 

  96. Schaefer, P.W., et al., Quantitative assessment of core/penumbra mismatch in acute stroke: CT and MR perfusion imaging are strongly correlated when sufficient brain volume is imaged. Stroke, 2008. 39(11): p. 2986-92.

    Article  PubMed  Google Scholar 

  97. Fiehler, J., et al., Bleeding risk analysis in stroke imaging before thromboLysis (BRASIL): pooled analysis of T2*-weighted magnetic resonance imaging data from 570 patients. Stroke, 2007. 38(10): p. 2738-44.

    Article  PubMed  Google Scholar 

  98. Mullins, M.E., et al., Comparison of image quality between conventional and low-dose nonenhanced head CT. AJNR Am J Neuroradiol, 2004. 25(4): p. 533-8.

    PubMed  Google Scholar 

  99. Kendell, B. and P. Pullicono, Intravascular contrast injection in ischemic lesions, II. Effect on prognosis. Neuro­radiology, 1980. 19: p. 241-3.

    Google Scholar 

  100. Doerfler, A., et al., Are iodinated contrast agents detrimental in acute cerebral ischemia? An experimental study in rats. Radiology, 1998. 206: p. 211-7.

    CAS  Google Scholar 

  101. Palomaki, H., et al., Administration of nonionic iodinated contrast medium does not influence the outcome of patients with ischemic brain infarction. Cerebrovasc Dis, 2003. 15(1–2): p. 45-50.

    Article  PubMed  CAS  Google Scholar 

  102. Aspelin, P., et al., Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med, 2003. 348(6): p. 491-9.

    Article  PubMed  CAS  Google Scholar 

  103. Fiorella, D., et al., Assessment of the reproducibility of postprocessing dynamic CT perfusion data. AJNR Am J Neuroradiol, 2004. 25(1): p. 97-107.

    PubMed  Google Scholar 

  104. Kealey, S.M., et al., User-defined vascular input function curves: influence on mean perfusion parameter values and signal-to-noise ratio. Radiology, 2004. 231(2): p. 587-93.

    Article  PubMed  Google Scholar 

  105. Sanelli, P.C., et al., The effect of varying user-selected input parameters on quantitative values in CT perfusion maps. Academic Radiology, 2004. 11: p. 1085-92.

    Google Scholar 

  106. Soares, B.P., et al., Automated versus manual post-processing of perfusion-CT data in patients with acute cerebral ischemia: influence on interobserver variability. Neuroradiology, 2009. 51(7): p. 445-51.

    Article  PubMed  Google Scholar 

  107. Villringer, A., et al., Dynamic imaging with lanthanide chelates in normal brain: Contrast due to magnetic susceptibility effects. Magn Reson Med, 1988. 6: p. 164-174.

    Article  PubMed  CAS  Google Scholar 

  108. Zilkha, E., et al., Computer subtraction in regional cerebral blood-volume measurements using the EMI-Scanner. Br J Radiol, 1976. 49(580): p. 330-4.

    Article  PubMed  CAS  Google Scholar 

  109. Shih, T.T. and K.M. Huang, Acute stroke: detection of changes in cerebral perfusion with dynamic CT scanning. Radiology, 1988. 169(2): p. 469-74.

    PubMed  CAS  Google Scholar 

  110. Meier, P. and K. Zieler, On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol, 1954. 6: p. 731-44.

    PubMed  CAS  Google Scholar 

  111. Roberts, G. and K. Larson, The interpretation of mean transit time measurements for multi-phase tissue systems. J Theor Biol, 1973. 39: p. 447-75.

    Article  PubMed  CAS  Google Scholar 

  112. Shetty, S.K. and M.H. Lev, CT perfusion in acute stroke. Neuroimaging Clin N Am, 2005. 15(3): p. 481-501, ix.

    Google Scholar 

  113. Roberts, H.C., et al., Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol, 2000. 21(5): p. 891-9.

    PubMed  CAS  Google Scholar 

  114. Zierler, K.L., Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res, 1962. 10: p. 393-407.

    Article  Google Scholar 

  115. Zierler, K.L., Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res, 1965. 16: p. 309-21.

    Article  PubMed  CAS  Google Scholar 

  116. Calamante, F., et al., Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab, 1999. 19(7): p. 701-35.

    Article  PubMed  CAS  Google Scholar 

  117. Lipowsky, H.H., S. Kovalcheck, and B.W. Zweifach, The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circ Res, 1978. 43(5): p. 738-49.

    Article  PubMed  CAS  Google Scholar 

  118. Klitzman, B. and B.R. Duling, Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Physiol, 1979. 237(4): p. H481-90.

    PubMed  CAS  Google Scholar 

  119. Phelps, M.E., R.L. Grubb, Jr., and M.M. Ter-Pogossian, In vivo regional cerebral blood volume by x-ray fluorescence: validation of method. J Appl Physiol, 1973. 35(5): p. 741-7.

    PubMed  CAS  Google Scholar 

  120. Lin, K., et al., Accuracy of the Alberta Stroke Program Early CT Score during the first 3 hours of middle cerebral artery stroke: comparison of noncontrast CT, CT ­angiography source images, and CT perfusion. AJNR Am J Neuroradiol, 2008. 29(5): p. 931-6.

    Article  PubMed  CAS  Google Scholar 

  121. Mullani, N.A. and K.L. Gould, First-pass measurements of regional blood flow with external detectors. J Nucl Med, 1983. 24(7): p. 577-81.

    PubMed  CAS  Google Scholar 

  122. Miles, K.A., Measurement of tissue perfusion by dynamic computed tomography. Br J Radiol, 1991. 64(761): p. 409-12.

    Article  PubMed  CAS  Google Scholar 

  123. Lee, T.Y., Scientific basis and validation, in Multidetector computed tomography in cerebrovascular disease, K.A.E. Miles, Eastwood J.D., Konig M., Editors. 2007, Abingdon: Informa Healthcare. p. 13-27.

    Google Scholar 

  124. Ostergaard, L., et al., High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med, 1996. 36(5): p. 726-36.

    CAS  Google Scholar 

  125. Calamante, F., D.G. Gadian, and A. Connelly, Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med, 2000. 44(3): p. 466-73.

    Article  PubMed  CAS  Google Scholar 

  126. Calamante, F., D.G. Gadian, A. Connelly, Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke, 2002. 33(4): p. 1146-51.

    Article  PubMed  CAS  Google Scholar 

  127. Ostergaard, L., et al., High resolution of cerebral blood flow using intravascular tracer bolus passages. PartI: mathematical approach ad statistical analysis. Magnetic Resonance Imaging in Medicine, 1996. 36(5): p. 715-25.

    Google Scholar 

  128. Lassen, N.A., Cerebral transit of an intravascular tracer may allow measurement of regional blood volume but not regional blood flow. J Cereb Blood Flow Metab, 1984. 4(4): p. 633-4.

    Article  PubMed  CAS  Google Scholar 

  129. Lee, T.Y., M. Blake, Implementing deconvolution analysis for perfusion CT, in Multidetector computed tomography in cerebrovascular disease, K.A. Miles, Eastwood J.D., Konig M., Editors. 2007, Abingdon: Informa Healthcare. p. 29-45.

    Google Scholar 

  130. Gobbel, G.T. and J.R. Fike, A deconvolution method for evaluating indicator-dilution curves. Phys Med Biol, 1994. 39(11): p. 1833-54.

    Article  PubMed  CAS  Google Scholar 

  131. Rempp, K.A., et al., Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology, 1994. 193(3): p. 637-41.

    PubMed  CAS  Google Scholar 

  132. Farebrother, R.W., Linear least squares computations. 1988, New York: Marcel Dekker.

    Google Scholar 

  133. Lawson, C.L., Hanson, R.J, Solving least squares problems. 1995, Philadelphia: SIAM.

    Google Scholar 

  134. Wirestam, R., et al., Assessment of regional cerebral blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques. Magn Reson Med, 2000. 43(5): p. 691-700.

    Article  PubMed  CAS  Google Scholar 

  135. Cenic, A., et al., A CT method to measure hemodynamics in brain tumors: validation and application of cerebral blood flow maps. AJNR Am J Neuroradiol, 2000. 21(3): p. 462-70.

    PubMed  CAS  Google Scholar 

  136. Stewart, G., N., Researches on the circulation time in organs and on the influences which affect it. J Physiol, 1894. 15: p. 1.

    Google Scholar 

  137. Ostergaard, L., et al., Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data. J Cereb Blood Flow Metab, 1999. 19(6): p. 690-9.

    Article  PubMed  CAS  Google Scholar 

  138. Furukawa, M., et al., Evaluation of cerebral perfusion parameters measured by perfusion CT in chronic cerebral ischemia: comparison with xenon CT. J Comput Assist Tomogr, 2002. 26(2): p. 272-8.

    Article  PubMed  Google Scholar 

  139. Gillard, J.H., et al., Reproducibility of quantitative CT perfusion imaging. Br J Radiol, 2001. 74(882): p. 552-5.

    PubMed  CAS  Google Scholar 

  140. Eastwood, J.D., et al., Correlation of early dynamic CT perfusion imaging with whole-brain MR diffusion and perfusion imaging in acute hemispheric stroke. AJNR Am J Neuroradiol, 2003. 24(9): p. 1869-75.

    PubMed  Google Scholar 

  141. Wintermark, M., et al., Comparison of admission perfusion computed tomography and qualitative diffusion- and ­perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke, 2002. 33(8): p. 2025-31.

    Article  PubMed  CAS  Google Scholar 

  142. Schramm, P., et al., Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours’ duration. Stroke, 2004. 35: p. 1652-8.

    Google Scholar 

  143. Wang, X.C., et al., Identification of infarct core and penumbra in acute stroke using CT perfusion source images. AJNR Am J Neuroradiol, 2009. 31: p. 34-9.

    Google Scholar 

  144. Lee, T.Y., M. Blake, X. Chen, K.A. Miles, Image processing, in Multidetector computed tomography in cerebrovascular disease, K.A.E. Miles, Eastwood J.D., Konig M., Editors. 2007, Abingdon: Informa Healthcare. p. 57-69.

    Google Scholar 

  145. van der Schaaf, I., et al., Influence of partial volume on venous output and arterial input function. AJNR Am J Neuroradiol, 2006. 27(1): p. 46-50.

    PubMed  Google Scholar 

  146. Sanelli, P.C., et al., The effect of varying user-selected input parameters on quantitative values in CT perfusion maps. Acad Radiol, 2004. 11(10): p. 1085-92.

    Article  PubMed  Google Scholar 

  147. Calamante, F., P.J. Yim, J.R. Cebral, Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. Neuroimage, 2003. 19(2 Pt 1): p. 341-53.

    Article  PubMed  Google Scholar 

  148. Wu, O., et al., Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med, 2003. 50(1): p. 164-74.

    Article  PubMed  Google Scholar 

  149. Wittsack, H.J., et al., CT-perfusion imaging of the human brain: advanced deconvolution analysis using circulant singular value decomposition. Comput Med Imaging Graph, 2008. 32(1): p. 67-77.

    Article  PubMed  CAS  Google Scholar 

  150. Calamante, F., M. Morup, L.K. Hansen, Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med, 2004. 52(4): p. 789-97.

    Article  PubMed  Google Scholar 

  151. Ibaraki, M., et al., Tracer delay correction of cerebral blood flow with dynamic susceptibility contrast-enhanced MRI. J Cereb Blood Flow Metab, 2005. 25(3): p. 378-90.

    Article  PubMed  Google Scholar 

  152. Kudo, K., et al., Difference in tracer delay-induced effect among deconvolution algorithms in CT perfusion analysis: quantitative evaluation with digital phantoms. Radiology, 2009. 251(1): p. 241-9.

    Article  PubMed  Google Scholar 

  153. Kudo, K., M. Sasaki, K. Yamada, S. Momoshima, H. Utsunomiya, H. Shirato, K. Ogasawara; for Acute Stroke Imaging Standardization Group Japan (ASIST-Japan) Investigators, Differences in CT perfusion maps generated by different commercially available software: Quantitative analysis using identical source data of acute stroke patients. Radiology, 2010. 254: p. 200-9.

    Google Scholar 

  154. Christensen, S., et al., Comparison of 10 perfusion MRI parameters in 97 sub-6-hour stroke patients using ­voxel-based receiver operating characteristics analysis. Stroke, 2009. 40(6): p. 2055-61.

    Article  PubMed  Google Scholar 

  155. Konstas, A.A., Lev, M.H., CT perfusion imaging of acute stroke: The need for arrival time delay insensitive and standardized postprocessing algorithms? Radiology, 2010. 254(1): p. 22-5.

    Article  PubMed  Google Scholar 

  156. Goldmakher, G.V., S. Kamalian, P.W. Schaefer, M. Joshi, G.J. Harris, M.H. Lev, Fully automated processing of stroke CT perfusion maps is fast and accurate. in Radiological Society of North America Scientific Assembly and Annual Meeting Program. 2006. Oak Brook, IL.

    Google Scholar 

  157. Serena, J., et al., Stroke on awakening: looking for a more rational management. Cerebrovasc Dis, 2003. 16(2): p. 128-33.

    Article  PubMed  Google Scholar 

  158. Hacke, W., et al., Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med, 2008. 359(13): p. 1317-29.

    Google Scholar 

  159. Saver, J.L., et al., Number needed to treat to benefit and to harm for intravenous tissue plasminogen activator therapy in the 3- to 4.5-hour window: joint outcome table analysis of the ECASS 3 trial. Stroke, 2009. 40(7): p. 2433-7.

    Google Scholar 

  160. Darby, D.G., et al., Pathophysiological topography of acute ischemia by combined diffusion-weighted and perfusion MRI. Stroke, 1999. 30(10): p. 2043-52.

    Article  PubMed  CAS  Google Scholar 

  161. Neumann-Haefelin, T., et al., Diffusion- and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke. Stroke, 1999. 30(8): p. 1591-7.

    CAS  Google Scholar 

  162. Hacke, W., et al., Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol, 2009. 8(2): p. 141-50.

    Article  PubMed  CAS  Google Scholar 

  163. Liebeskind, D.S., Reversing stroke in the 2010s. lessons from desmoteplase in acute ischemic stroke-2 (DIAS-2). Stroke, 2009. 40: p. 3156-8.

    Google Scholar 

  164. Copen, W.A., et al., Existence of the diffusion-perfusion mismatch within 24 hours after onset of acute stroke: dependence on proximal arterial occlusion. Radiology, 2009. 250(3): p. 878-86.

    Article  PubMed  Google Scholar 

  165. Natarajan, S.K., et al., Safety and effectiveness of endovascular therapy after 8 hours of acute ischemic stroke onset and wake-up strokes. Stroke, 2009. 40: 3269-74.

    Google Scholar 

  166. Rother, J., Imaging-guided extension of the time window: ready for application in experienced stroke centers? Stroke, 2003. 34(2): p. 575-83.

    Article  PubMed  Google Scholar 

  167. Donnan, G.A., et al., Penumbral selection of patients for trials of acute stroke therapy. Lancet Neurol, 2009. 8(3): p. 261-9.

    Article  PubMed  CAS  Google Scholar 

  168. Rother, J., et al., Effect of intravenous thrombolysis on MRI parameters and functional outcome in acute stroke <6 hours. Stroke, 2002. 33(10): p. 2438-45.

    Article  PubMed  CAS  Google Scholar 

  169. Parsons, M.W., et al., Diffusion- and perfusion-weighted MRI response to thrombolysis in stroke. Ann Neurol, 2002. 51(1): p. 28-37.

    Article  PubMed  Google Scholar 

  170. Hacke, W., et al., The desmoteplase in acute ischemic stroke trial (DIAS): A phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke, 2005. 36: p. 66.

    Google Scholar 

  171. Schramm, P., et al., Comparison of CT and CT angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke, 2002. 33(10): p. 2426-32.

    Article  PubMed  Google Scholar 

  172. Aviv, R.I., et al., Early stroke detection and extent: impact of experience and the role of computed tomography angiography source images. Clin Radiol, 2007. 62(5): p. 447-52.

    Article  PubMed  CAS  Google Scholar 

  173. Coutts, S.B., et al., ASPECTS on CTA source images versus unenhanced CT: added value in predicting final infarct extent and clinical outcome. Stroke, 2004. 35(11): p. 2472-6.

    Article  PubMed  Google Scholar 

  174. Alpert, N.M., et al., Performance evaluation of an automated system for registration and postprocessing of ct scans. J Comput Assist Tomogr, 2001. 25(5): p. 747-52.

    Article  PubMed  CAS  Google Scholar 

  175. Schellingerhout, D., et al., Coregistration of head CT comparison studies: assessment of clinical utility. Acad Radiol, 2003. 10(3): p. 242-8.

    Article  PubMed  Google Scholar 

  176. Kidwell, C.S., et al., Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol, 2000. 47(4): p. 462-9.

    Article  PubMed  CAS  Google Scholar 

  177. Kidwell, C.S., et al., Late secondary ischemic injury in patients receiving intraarterial thrombolysis. Ann Neurol, 2002. 52(6): p. 698-703.

    Article  PubMed  Google Scholar 

  178. Hunter, G.J., et al., Whole-brain CT perfusion measurement of perfused cerebral blood volume in acute ischemic stroke: probability curve for regional infarction. Radiology, 2003. 227(3): p. 725-30.

    Article  PubMed  Google Scholar 

  179. Wang, X.C., et al., Clinical value of computed tomography perfusion source images in acute stroke. Neurol Res, 2009. 31(10): p. 1079-83.

    Article  PubMed  Google Scholar 

  180. Warach, S., Measurement of the ischemic penumbra with MRI: it’s about time. Stroke, 2003. 34(10): p. 2533-4.

    Article  PubMed  Google Scholar 

  181. Wu, O., et al., Predicting tissue outcome in acute human cerebral ischemia using combined diffusion- and perfusion-weighted MR imaging. Stroke, 2001. 32(4): p. 933-42.

    Article  PubMed  CAS  Google Scholar 

  182. Barber, P.A., et al., Prediction of stroke outcome with echoplanar perfusion- and diffusion-weighted MRI. Neurology, 1998. 51(2): p. 418-26.

    Article  PubMed  CAS  Google Scholar 

  183. Astrup, J., B.K. Siesjo, L. Symon, Thresholds in cerebral ischemia – the ischemic penumbra. Stroke, 1981. 12(6): p. 723-5.

    Article  PubMed  CAS  Google Scholar 

  184. Sorensen, A.G., et al., Hyperacute stroke: evaluation with combined multisection diffusion- weighted and hemodynamically weighted echo-planar MR imaging. Radiology, 1996. 199(2): p. 391-401.

    PubMed  CAS  Google Scholar 

  185. Sunshine, J.L., R.W.Tarr, C.F. Lanzieri, D.M.D. Landis, W.R. Selman, J.S. Lewin, Hyperacute stroke: ultrafast MR imaging to triage patients prior to therapy. Radiology, 1999. 212: p. 325-32.

    PubMed  CAS  Google Scholar 

  186. Schlaug, G., et al., The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology, 1999. 53(7): p. 1528-37.

    Article  PubMed  CAS  Google Scholar 

  187. Wintermark, M., et al., Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke, 2006. 37(4): p. 979-85.

    Article  PubMed  Google Scholar 

  188. Hossmann, K.A., Viability thresholds and the penumbra of focal ischemia. Ann Neurol, 1994. 36(4): p. 557-65.

    Article  PubMed  CAS  Google Scholar 

  189. Harper, A.M., Autoregulation of cerebral blood flow: influence of the arterial blood pressure on the blood flow through the cerebral cortex. J Neurol Neurosurg Psychiatry, 1966. 29(5): p. 398-403.

    Article  PubMed  CAS  Google Scholar 

  190. Mayer, T.E., et al., Dynamic CT perfusion imaging of acute stroke. AJNR Am J Neuroradiol, 2000. 21(8): p. 1441-9.

    PubMed  CAS  Google Scholar 

  191. Mehta, N., et al. Prediction of final infarct size in acute stroke using cerebral blood flow/cerebral blood volume mismatch: added value of quantitative first pass CT perfusion imaging in successfully treated versus unsuccessfully treated/untreated patients. in Proceedings of the 41st Annual Meeting of the American Society of Neuroradiology. 2003. Washington DC.

    Google Scholar 

  192. Aksoy, F.G., et al. CT perfusion imaging of acute stroke: how well do CBV, CBF, and MTT maps predict final infarct size? in Proceedings of the 86th Scientific Assembly and Annual Meeting of the Radiological Society of North America. 2000. Chicago, IL.

    Google Scholar 

  193. Murphy, B.D., J. Fox, D.H Lee, D.J. Sahlas, S.E. Black, M.J. Hogan, S.B. Coutts, A.M. Demchuk, M. Goyal, R.I. Aviv, S. Symons, I.B. Gulka, V. Beletsky, D. Pelz, R. Chan, T-Y. Lee, White matter thresholds for the ischemic penumbra and infarct core in acute stroke patients: a CT Perfusion study. Radiology, 2008. 247: p. 818-25.

    Google Scholar 

  194. Murphy, B.D., et al., Identification of penumbra and infarct in acute ischemic stroke using computed tomography ­perfusion-derived blood flow and blood volume measurements. Stroke, 2006. 37(7): p. 1771-7.

    Article  PubMed  CAS  Google Scholar 

  195. Sorensen, A., et al., Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow and mean tissue transit time. Radiology, 1999. 210: p. 519-27.

    PubMed  CAS  Google Scholar 

  196. Beaulieu, C., et al., Longitudinal magnetic resonance imaging study of perfusion and diffusion in stroke: evolution of lesion volume and correlation with clinical outcome. Ann Neurol, 1999. 46(4): p. 568-78.

    Article  PubMed  CAS  Google Scholar 

  197. Derex, L., et al., Influence of pretreatment MRI parameters on clinical outcome, recanalization and infarct size in 49 stroke patients treated by intravenous tissue plasminogen activator. J Neurol Sci, 2004. 225(1–2): p. 3-9.

    Article  PubMed  CAS  Google Scholar 

  198. Rohl, L., et al., Correlation between diffusion- and perfusion-weighted MRI and neurological deficit measured by the Scandinavian Stroke Scale and Barthel Index in hyperacute subcortical stroke (< or = 6 hours). Cerebrovasc Dis, 2001. 12(3): p. 203-13.

    Article  PubMed  CAS  Google Scholar 

  199. Barber, P.A., et al., The use of PWI and DWI measures in the design of “proof-of-concept” stroke trials. J Neuroimaging, 2004. 14(2): p. 123-32.

    PubMed  Google Scholar 

  200. Butcher, K., et al., Perfusion thresholds in acute stroke thrombolysis. Stroke, 2003. 34(9): p. 2159-64.

    Article  PubMed  CAS  Google Scholar 

  201. Kane, I., et al., Comparison of 10 different magnetic ­resonance perfusion imaging processing methods in acute ischemic stroke: effect on lesion size, proportion of patients with diffusion/perfusion mismatch, clinical scores, and radiologic outcomes. Stroke, 2007. 38(12): p. 3158-64.

    Article  PubMed  Google Scholar 

  202. Olivot, J.M., et al., Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke, 2009. 40(2): p. 469-75.

    Article  PubMed  Google Scholar 

  203. Albers, G.W., et al., Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol, 2006. 60(5): p. 508-17.

    Article  PubMed  Google Scholar 

  204. Sobesky, J., et al., Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke. Stroke, 2004. 35(12): p. 2843-7.

    Article  PubMed  CAS  Google Scholar 

  205. Davis, S.M., et al., Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol, 2008. 7(4): p. 299-309.

    Article  PubMed  Google Scholar 

  206. Davis, S.M. and G.A. Donnan, MR mismatch and thrombolysis: appealing but validation required. Stroke, 2009. 40(8): p. 2910.

    Article  PubMed  Google Scholar 

  207. Sasaki, O., et al., Complete recanalization via fibrinolytic therapy can reduce the number of ischemic territories that progress to infarction. AJNR Am J Neuroradiol, 1996. 17(9): p. 1661-8.

    PubMed  CAS  Google Scholar 

  208. Ueda, T., et al., Outcome in acute stroke with successful intra- arterial thrombolysis procedure and predictive value of initial single-photon emission-computed tomography. J Cereb Blood Flow Metab, 1999. 19: p. 99-108.

    Article  PubMed  CAS  Google Scholar 

  209. Liu, Y., et al., Cerebral hemodynamics in human acute ischemic stroke: a study with diffusion- and perfusion-weighted magnetic resonance imaging and SPECT. J Cereb Blood Flow Metab, 2000. 20(6): p. 910-20.

    Article  PubMed  CAS  Google Scholar 

  210. Hatazawa, J., et al., Cerebral blood volume in acute brain infarction: A combined study with dynamic susceptibility contrast MRI and 99mTc-HMPAO-SPECT. Stroke, 1999. 30(4): p. 800-6.

    Article  PubMed  CAS  Google Scholar 

  211. Shimosegawa, E., et al., Cerebral infarction within six hours of onset: prediction of completed infarction with technetium-99m-HMPAO SPECT. J Nucl Med, 1994. 35(7): p. 1097-103.

    PubMed  CAS  Google Scholar 

  212. Rohl, L., et al., Viability thresholds of ischemic penumbra of hyperacute stroke defined by perfusion-weighted MRI and apparent diffusion coefficient. Stroke, 2001. 32(5): p. 1140-6.

    Article  PubMed  CAS  Google Scholar 

  213. Suzuki, Y., et al., Perfusion computed tomography for the indication of percutaneous transluminal reconstruction for acute stroke. J Stroke Cerebrovasc Dis, 2006. 15(1): p. 18-25.

    Article  PubMed  Google Scholar 

  214. Koennecke, H.C., Editorial comment–Challenging the concept of a dynamic penumbra in acute ischemic stroke. Stroke, 2003. 34(10): p. 2434-5.

    Article  PubMed  Google Scholar 

  215. Heiss, W.D., Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab, 2000. 20(9): p. 1276-93.

    Article  PubMed  CAS  Google Scholar 

  216. Jovin, T.G., et al., The cortical ischemic core and not the consistently present penumbra is a determinant of clinical outcome in acute middle cerebral artery occlusion. Stroke, 2003. 34(10): p. 2426-33.

    Article  PubMed  Google Scholar 

  217. Lev, M.H., et al. A CTA based, multivariable, “benefit of recanalization” model for acute stroke triage: core infarct size on CTA source images independently predicts outcome. in Proceedings of the 42nd Annual Meeting of the American Society of Neuroradiology. 2004. Seattle, Washington.

    Google Scholar 

  218. Suarez, J., et al., Predictors of clinical improvement, angiographic recanalization, and intracranial hemorrhage after intra-arterial thromblysis for acute ischemic stroke. Stroke, 1999. 30: p. 2094-100.

    Article  PubMed  CAS  Google Scholar 

  219. Molina, C.A., et al., Improving the predictive accuracy of recanalization on stroke outcome in patients treated with tissue plasminogen activator. Stroke, 2004. 35(1): p. 151-6.

    Article  PubMed  CAS  Google Scholar 

  220. Baird, A.E., et al., A three-item scale for the early prediction of stroke recovery. Lancet, 2001. 357(9274): p. 2095-9.

    Article  PubMed  CAS  Google Scholar 

  221. Rosenthal, E.S., et al., Role of recanalization in acute stroke outcome: rationale for a CT angiogram-based “benefit of recanalization” model. AJNR Am J Neuroradiol, 2008. 29(8): p. 1471-5.

    Article  PubMed  CAS  Google Scholar 

  222. Nighoghossian, N., et al., Baseline magnetic resonance imaging parameters and stroke outcome in patients treated by intravenous tissue plasminogen activator. Stroke, 2003. 34(2): p. 458-63.

    Article  PubMed  CAS  Google Scholar 

  223. Sanak, D., et al., Impact of diffusion-weighted MRI-measured initial cerebral infarction volume on clinical outcome in acute stroke patients with middle cerebral artery occlusion treated by thrombolysis. Neuroradiology, 2006. 48(9): p. 632-9.

    Article  PubMed  Google Scholar 

  224. Yoo, A.J., et al., MRI-based selection for intra-arterial stroke therapy: value of pretreatment diffusion-weighted imaging lesion volume in selecting patients with acute stroke who will benefit from early recanalization. Stroke, 2009. 40(6): p. 2046-54.

    Article  PubMed  Google Scholar 

  225. Gasparotti, R., et al., Perfusion CT in patients with acute ischemic stroke treated with intra-arterial thrombolysis: predictive value of infarct core size on clinical outcome. AJNR Am J Neuroradiol, 2009. 30(4): p. 722-7.

    Article  PubMed  CAS  Google Scholar 

  226. Pessin, M.S., G.J. Del Zoppo, and C.J. Estol, Thrombolytic agents in the treatment of stroke. Clin Neuropharmacol, 1990. 13(4): p. 271-89.

    Article  PubMed  CAS  Google Scholar 

  227. Hacke, W., et al., Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet, 1998. 352(9136): p. 1245-51.

    Article  CAS  Google Scholar 

  228. Dzialowski, I., et al., Extent of early ischemic changes on computed tomography (CT) before thrombolysis: prognostic value of the Alberta Stroke Program Early CT Score in ECASS II. Stroke, 2006. 37(4): p. 973-8.

    Article  PubMed  Google Scholar 

  229. Larrue, V., et al., Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian Acute Stroke Study (ECASS II). Stroke, 2001. 32(2): p. 438-41.

    Article  PubMed  CAS  Google Scholar 

  230. Hacke, W., et al., Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet, 2004. 363(9411): p. 768-74.

    Article  PubMed  Google Scholar 

  231. Ogasawara, K., et al., Brain single-photon emission CT studies using 99mTc-HMPAO and 99mTc-ECD early after recanalization by local intraarterial thrombolysis in patients with acute embolic middle cerebral artery occlusion. AJNR Am J Neuroradiol, 2001. 22(1): p. 48-53.

    PubMed  CAS  Google Scholar 

  232. Gupta, R., et al., Reduced pretreatment ipsilateral middle cerebral artery cerebral blood flow is predictive of ­symptomatic hemorrhage post-intra-arterial thrombolysis in patients with middle cerebral artery occlusion. Stroke, 2006. 37(10): p. 2526-30.

    Article  PubMed  Google Scholar 

  233. Kidwell, C.S., et al., Hemorrhage early MRI evaluation (HEME) study [abstract]. Stroke, 2003. 34: p. 239.

    Article  Google Scholar 

  234. Kidwell, C.S., et al., Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA, 2004. 292(15): p. 1823-30.

    Article  PubMed  CAS  Google Scholar 

  235. Campbell, B.C., et al., Regional very low cerebral blood volume predicts hemorrhagic transformation better than diffusion-weighted imaging volume and thresholded apparent diffusion coefficient in acute ischemic stroke. Stroke, 2010. 41: p. 82-8.

    Google Scholar 

  236. Tomsick, T., TIMI, TIBI, TICI: I came, I saw, I got confused. AJNR Am J Neuroradiol, 2007. 28(2): p. 382-4.

    PubMed  Google Scholar 

  237. Zaidat, O.O., et al., Thrombolytic therapy of acute ischemic stroke: correlation of angiographic recanalization with clinical outcome. AJNR Am J Neuroradiol, 2005. 26(4): p. 880-4.

    PubMed  Google Scholar 

  238. Rha, J.H. and J.L. Saver, The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke, 2007. 38(3): p. 967-73.

    Article  PubMed  Google Scholar 

  239. Tomsick, T., et al., Revascularization results in the Interventional Management of Stroke II trial. AJNR Am J Neuroradiol, 2008. 29(3): p. 582-7.

    Article  PubMed  CAS  Google Scholar 

  240. Soares, B.P., J.D. Chien, M. Wintermark, MR and CT monitoring of recanalization, reperfusion, and penumbra salvage: everything that recanalizes does not necessarily reperfuse! Stroke, 2009. 40(3 Suppl): p. S24-7.

    Google Scholar 

  241. Janjua, N., et al., Impact of arterial reocclusion and distal fragmentation during thrombolysis among patients with acute ischemic stroke. AJNR Am J Neuroradiol, 2008. 29(2): p. 253-8.

    Article  PubMed  CAS  Google Scholar 

  242. Ames, A., III, et al., Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol, 1968. 52(2): p. 437-53.

    Google Scholar 

  243. del Zoppo, G.J., Virchow’s triad: the vascular basis of cerebral injury. Rev Neurol Dis, 2008. 5(Suppl 1): p. S12-21.

    Google Scholar 

  244. De Silva, D.A., et al., Assessing reperfusion and recanalization as markers of clinical outcomes after intravenous thrombolysis in the echoplanar imaging thrombolytic evaluation trial (EPITHET). Stroke, 2009. 40(8): p. 2872-4.

    Article  PubMed  CAS  Google Scholar 

  245. Soares, B.P., et al., Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization. A proof of concept using CT in acute ischemic stroke patients. Stroke, 2010. 41: p. e34-40.

    Google Scholar 

  246. Hacke, W., et al., The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke, 2005. 36(1): p. 66-73.

    Article  PubMed  CAS  Google Scholar 

  247. Muir, K.W. and D.G. Grosset, Neuroprotection for acute stroke: making clinical trials work. Stroke, 1999. 30(1): p. 180-2.

    Article  PubMed  CAS  Google Scholar 

  248. Furlan, A.J., et al., Dose escalation of desmoteplase for acute ischemic stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke, 2006. 37(5): p. 1227-31.

    Article  PubMed  CAS  Google Scholar 

  249. Grotta, J., Neuroprotection is unlikely to be effective in humans using current trial designs. Stroke, 2002. 33(1): p. 306-7.

    PubMed  Google Scholar 

  250. Davis, S.M., et al., Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol, 2008. 7: p. 299-309.

    Google Scholar 

  251. Warach, S., et al., Effect of the glycine antagonist gavestinel on cerebral infarcts in acute stroke patients, a randomized placebo-controlled trial: The GAIN MRI Substudy. Cerebrovasc Dis, 2006. 21(1–2): p. 106-11.

    Article  PubMed  CAS  Google Scholar 

  252. Warach, S., et al., Effect of citicoline on ischemic lesions as measured by diffusion-weighted magnetic resonance imaging. Citicoline 010 Investigators. Ann Neurol, 2000. 48(5): p. 713-22.

    Google Scholar 

  253. Singhal, A.B., et al., A pilot study of normobaric oxygen therapy in acute ischemic stroke. Stroke, 2005. 36(4): p. 797-802.

    Article  PubMed  Google Scholar 

  254. De Georgia, M.A., et al., Cooling for acute ischemic brain damage (COOL AID): a feasibility trial of endovascular cooling. Neurology, 2004. 63(2): p. 312-7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Lev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Konstas, A.A., González, R.G., Lev, M.H. (2011). CT Perfusion (CTP). In: González, R., Hirsch, J., Lev, M., Schaefer, P., Schwamm, L. (eds) Acute Ischemic Stroke. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12751-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12751-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12750-2

  • Online ISBN: 978-3-642-12751-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics