Skip to main content

Modeling Space by Stereographic Rejection

  • 1767 Accesses

Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


3D geo-information analyses topological and metrical relationships between spatial objects. This analysis needs a suitable representation of the three-dimensional world. This paper proposes to use the 4D unit sphere as a model. In essence this model is already present in mathematical theories like Lie sphere geometry, Moebius geometry and Geometric Algebra. The forementioned theories use the stereographic projection implicitely to build the model. This paper explicitely uses this geometric transformation to introduce the model as simply as possible following both an intuitive geometric and a formal algebraic self-contained way. The calculation in a CAD-environment of 3D Voronoi cells around given 3D points gives a straightforward example of the topological and metrical capabilities of this model. The addition of geometrical meaningful algebraic operations to the model will increase its computational power.


  • Convex Hull
  • Unit Sphere
  • Voronoi Diagram
  • Voronoi Cell
  • Stereographic Projection

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-12670-3_2
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-12670-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. 1.

    Here rejection is used in the sense of ‘back’ projection. In Geometric Algebra the rejection of a vector has a different meaning: the component complementary to its projection on another vector.

  2. 2.

    For a better symbolic discrimination of the elements in R n+1 in stead of the letter X the letter U is used for a general element, and the letter P denotes a pole. Consequently coordinates in R n+1 are denoted by \( {u_i} \).

  3. 3.

    See also Sect. 4.5.

  4. 4.

    See Sect. 2: substitute \( {u_i} = \displaystyle\frac{{{v_i}}}{{{v_{n + 2}}}} \) and scale to get a suitable representation.

  5. 5.

    Historic aside: this is in fact the ancient construction of the mean proportional from Proposition 13 of book VI in The Elements of Euclid.

  6. 6.

    Satz 6.54 from the Tractatus logico-philosophicus of Ludwig Wittgenstein.


  • Ayres, F. (1967) Theory and Problems of Projective Geometry, Schaum’s Outline Series, McGraw-Hill, New York

    Google Scholar 

  • Bil, W.L. (1992) Sectie en Projectie, Nederlands Geodetisch Tijdschrift Geodesia, 10:405–411

    Google Scholar 

  • Blaschke, W. (1929) Vorlesungen über Differentialgeometrie III, Springer, Berlin

    Google Scholar 

  • Brannan, D.A., Matthew, F.E., Gray, J. (1999) Geometry, Cambridge University Press, Cambridge

    Google Scholar 

  • Brown, K.Q. (1979) Voronoi diagrams from convex hulls, Information Processing Letters, 9:223–228

    CrossRef  Google Scholar 

  • Cecil, T. (1992) Lie Sphere Geometry, Springer, New York

    Google Scholar 

  • Coxeter, H.S.M. (1969) Introduction to Geometry: De Divina Proportione, John Wiley & Sons, New York

    Google Scholar 

  • de Berg, M., van Kreveld, M., Overmars, M. and Schwarzkopf, O. (1998) Computational Geometry: Algorithms and Applications, 2nd edn, Springer, Berlin, Germany

    Google Scholar 

  • Dorst, L., Fontijne, D. Mann, S. (2007) Geometric Algebra for Computer Science, An Object Oriented Approach to Geometry, Morgan Kaufmann, Massachutas, USA

    Google Scholar 

  • Grafarend, E.W., Krumm, F.W. (2006) Map Projections, p. 72: Historical Aside: Stereographic Projection, Springer, New York

    Google Scholar 

  • Hestenes, D., Sobczyk, G. (1984) Clifford Algebra to Geometric Calculus, Reidel, Dordrecht

    Google Scholar 

  • Hestenes, D., Li, H., Rockwood, A. (1999) A unified algebraic framework for classical geometry: (1) A Unified Algebraic Approach for Classical Geometries. (2) Generalized Homogeneous Coordinates for Computational Geometry. (3) Spherical Conformal Geometry with Geometric Algebra. (4) A Universal Model for Conformal Geometries of Euclidean, Spherical and Double-Hyperbolic Spaces, in: Sommer, G. (ed), Geometric Computing with Clifford Algebra, Springer, London

    Google Scholar 

  • Ledoux, H. (2008) The Kinetic 3D Voronoi Diagram: A Tool for Simulating Environmental Processes, in: Oosterom, P.V., Zlatanova, S., Penninga, F., and Fendel E. (eds): Advances in 3D Geo Information Systems, Proceedings of the 2nd International Workshop on 3D Geoinformation, December 12–14, 2007, Delft, The Netherlands, Lecture Notes in Geoinformation and Cartography, Springer, pp. 361–380

    Google Scholar 

  • Pedoe, D. (1979) Circles, a Mathematical View, Dover, New York

    Google Scholar 

  • Perwass, C.B.U. (2008) Geometric Algebra with Applications in Engineering, Springer, Berlin

    Google Scholar 

  • Rosenfeld, B.A. (1988) A History of Non-Euclidean Geometry, pp. 121–130: Stereographic Projection, Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to W. L. (Pim) Bil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(Pim) Bil, W.L. (2011). Modeling Space by Stereographic Rejection. In: Kolbe, T., König, G., Nagel, C. (eds) Advances in 3D Geo-Information Sciences. Lecture Notes in Geoinformation and Cartography(). Springer, Berlin, Heidelberg.

Download citation