Skip to main content

Modeling Space by Stereographic Rejection

  • Chapter
  • First Online:
Advances in 3D Geo-Information Sciences

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

  • 1901 Accesses

Abstract

3D geo-information analyses topological and metrical relationships between spatial objects. This analysis needs a suitable representation of the three-dimensional world. This paper proposes to use the 4D unit sphere as a model. In essence this model is already present in mathematical theories like Lie sphere geometry, Moebius geometry and Geometric Algebra. The forementioned theories use the stereographic projection implicitely to build the model. This paper explicitely uses this geometric transformation to introduce the model as simply as possible following both an intuitive geometric and a formal algebraic self-contained way. The calculation in a CAD-environment of 3D Voronoi cells around given 3D points gives a straightforward example of the topological and metrical capabilities of this model. The addition of geometrical meaningful algebraic operations to the model will increase its computational power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here rejection is used in the sense of ‘back’ projection. In Geometric Algebra the rejection of a vector has a different meaning: the component complementary to its projection on another vector.

  2. 2.

    For a better symbolic discrimination of the elements in R n+1 in stead of the letter X the letter U is used for a general element, and the letter P denotes a pole. Consequently coordinates in R n+1 are denoted by \( {u_i} \).

  3. 3.

    See also Sect. 4.5.

  4. 4.

    See Sect. 2: substitute \( {u_i} = \displaystyle\frac{{{v_i}}}{{{v_{n + 2}}}} \) and scale to get a suitable representation.

  5. 5.

    Historic aside: this is in fact the ancient construction of the mean proportional from Proposition 13 of book VI in The Elements of Euclid.

  6. 6.

    Satz 6.54 from the Tractatus logico-philosophicus of Ludwig Wittgenstein.

References

  • Ayres, F. (1967) Theory and Problems of Projective Geometry, Schaum’s Outline Series, McGraw-Hill, New York

    Google Scholar 

  • Bil, W.L. (1992) Sectie en Projectie, Nederlands Geodetisch Tijdschrift Geodesia, 10:405–411

    Google Scholar 

  • Blaschke, W. (1929) Vorlesungen über Differentialgeometrie III, Springer, Berlin

    Google Scholar 

  • Brannan, D.A., Matthew, F.E., Gray, J. (1999) Geometry, Cambridge University Press, Cambridge

    Google Scholar 

  • Brown, K.Q. (1979) Voronoi diagrams from convex hulls, Information Processing Letters, 9:223–228

    Article  Google Scholar 

  • Cecil, T. (1992) Lie Sphere Geometry, Springer, New York

    Google Scholar 

  • Coxeter, H.S.M. (1969) Introduction to Geometry: De Divina Proportione, John Wiley & Sons, New York

    Google Scholar 

  • de Berg, M., van Kreveld, M., Overmars, M. and Schwarzkopf, O. (1998) Computational Geometry: Algorithms and Applications, 2nd edn, Springer, Berlin, Germany

    Google Scholar 

  • Dorst, L., Fontijne, D. Mann, S. (2007) Geometric Algebra for Computer Science, An Object Oriented Approach to Geometry, Morgan Kaufmann, Massachutas, USA

    Google Scholar 

  • Grafarend, E.W., Krumm, F.W. (2006) Map Projections, p. 72: Historical Aside: Stereographic Projection, Springer, New York

    Google Scholar 

  • Hestenes, D., Sobczyk, G. (1984) Clifford Algebra to Geometric Calculus, Reidel, Dordrecht

    Google Scholar 

  • Hestenes, D., Li, H., Rockwood, A. (1999) A unified algebraic framework for classical geometry: (1) A Unified Algebraic Approach for Classical Geometries. (2) Generalized Homogeneous Coordinates for Computational Geometry. (3) Spherical Conformal Geometry with Geometric Algebra. (4) A Universal Model for Conformal Geometries of Euclidean, Spherical and Double-Hyperbolic Spaces, in: Sommer, G. (ed), Geometric Computing with Clifford Algebra, Springer, London

    Google Scholar 

  • Ledoux, H. (2008) The Kinetic 3D Voronoi Diagram: A Tool for Simulating Environmental Processes, in: Oosterom, P.V., Zlatanova, S., Penninga, F., and Fendel E. (eds): Advances in 3D Geo Information Systems, Proceedings of the 2nd International Workshop on 3D Geoinformation, December 12–14, 2007, Delft, The Netherlands, Lecture Notes in Geoinformation and Cartography, Springer, pp. 361–380

    Google Scholar 

  • Pedoe, D. (1979) Circles, a Mathematical View, Dover, New York

    Google Scholar 

  • Perwass, C.B.U. (2008) Geometric Algebra with Applications in Engineering, Springer, Berlin

    Google Scholar 

  • Rosenfeld, B.A. (1988) A History of Non-Euclidean Geometry, pp. 121–130: Stereographic Projection, Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. L. (Pim) Bil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(Pim) Bil, W.L. (2011). Modeling Space by Stereographic Rejection. In: Kolbe, T., König, G., Nagel, C. (eds) Advances in 3D Geo-Information Sciences. Lecture Notes in Geoinformation and Cartography(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12670-3_2

Download citation

Publish with us

Policies and ethics