Skip to main content

Preliminary Findings of Visualization of the Interruptible Moment

  • Conference paper
High Performance Computing Systems and Applications (HPCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5976))

Abstract

Intelligent software must frequently interrupt users, but the problem of deciding when to interrupt the user is still unsolved. In this paper, an algorithm is presented that identifies the appropriate times to interrupt the user is proposed and visualizations of the user’s state. The Intelligent Interruption Algorithm draws from user, task, and environmental contextual information dynamically extracted from the environment as the user performs computer based tasks. The visualizations are a representation of these complex components presented in a way that is meaningful for analysis purposes and for the user. This paper presents the following: the interruption algorithm; the machine learning algorithms used; and the preliminary results of visualizing the interruptible moment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gievska, S., Sibert, J.: Using Task Context Variables for Selecting the Best Timing for Interrupting Users. In: Smart Objects and Ambient Intelligence Conference, Grenoble, France, pp. 171–176 (2005)

    Google Scholar 

  2. Horvitz, E., Apacible, J.: Learning and Reasoning about Interruption. In: ICMI. CHI, pp. 20–27 (2003)

    Google Scholar 

  3. Iqbal, S., Bailey, B.: Understanding and Developing Models for Detecting and Differentiating Breakpoints during Interactive Tasks. In: CHI 2007, pp. 697–706. ACM, San Jose (2007)

    Chapter  Google Scholar 

  4. Conati, C., Zhao, X.: Building and Evaluating an Intelligent Pedagogical Agent to Improve the Effectiveness of an Educational Game. In: IUI. ACM, Madeira (2004)

    Google Scholar 

  5. Gievska, S., Sibert, J.: Empirical Validation of a Computer-Mediated Coordination of Interruption. In: CHISIG - OZCHI 2004: Supporting Community Interaction, Wollongong, Australia, pp. 271–280 (2004)

    Google Scholar 

  6. Horvitz, E., Kadie, C., Paek, T., Hovel, D.: Models of Attention in Computing and Communication from Principles to Applications. Communications of the ACM 46, 52–59 (2003)

    Article  Google Scholar 

  7. Oliver, N., Horvitz, E.: A comparison of HMMs and dynamic bayesian networks for recognizing office activities. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 199–209. Springer, Heidelberg (2005)

    Google Scholar 

  8. Jambon, F.: Formal Modelling of Task Interruptions. In: CHI 1996, pp. 45–46 (1996)

    Google Scholar 

  9. Kim, Y., Baylor, A.: Pedagogical Agents as Learning Companions: The Role of Agent Competency and Type of Interaction. Association for Educational Communications and Technology 54, 223–243 (2006)

    Google Scholar 

  10. Yin, B., Chen, F.: Towards Automatic Cognitive Load Measurement from Speech Analysis. In: Jacko, J.A. (ed.) HCI 2007. LNCS, vol. 4550, pp. 1011–1020. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Sykes, E.R.: Determining the Effectiveness of the 3D Alice Programming Environment at the Computer Science I Level. Journal of Educational Computing Research 36 (2007)

    Google Scholar 

  12. Sykes, E.R.: Developmental Process Model for the Java Intelligent Tutoring System. Journal of Interactive Learning Research 18 (2007)

    Google Scholar 

  13. Sykes, E.R., Franek, F.: A Prototype for an Intelligent Tutoring System for Students Learning to Program in Java. International Journal of Computers and Applications 1, 35–44 (2004)

    Google Scholar 

  14. Horvitz, E., Koch, P., Apacible, J.: BusyBody: Creating and Fielding Personalized Models of the Cost of Interruption. In: CSCW 2004, vol. 6, pp. 507–510. ACM, Chicago (2004)

    Chapter  Google Scholar 

  15. Yu, K., Wang, H., Wu, X.: A Parallel Algorithm for Learning Bayesian Networks. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 1055–1063. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. O’Reilly, R.C., Munakata, Y.: Computational Explorations in Cognitive Neuroscience. MIT Press, London (2000)

    Google Scholar 

  17. Felder, R.M., Silverman, L.K.: Learning and Teaching Styles in Engineering Education. Engineering Education 78, 674–681 (1988)

    Google Scholar 

  18. GazeTracker Software Guide (2008)

    Google Scholar 

  19. Namasivayam, V., Prasanna, V.: Scalable Parallel Implementation of Exact Inference in Bayesian Networks. In: 12th International Conference on Parallel and Distributed Systems, vol. 1, pp. 143–150. IEEE, Los Alamitos (2006)

    Chapter  Google Scholar 

  20. Iqbal, S., Bailey, B.: Leveraging Characteristics of Task Structure to Predict the Cost of Interruption. In: CHI 2006, pp. 741–750. ACM, Montreal (2006)

    Chapter  Google Scholar 

  21. Iqbal, S., Horvitz, E.: Disruption and Recovery of Computing Tasks: Field Study, Analysis, and Directions. In: CHI 2007. ACM, San Jose (2007)

    Google Scholar 

  22. Garcıa, J.C.F., Mendez, J.J.S.: A Comparison of ANFIS, ANN and DBR systems on volatile Time Series Identification. In: Annual Meeting of the North American Fuzzy Information Processing Society, pp. 319–324. IEEE, Los Alamitos (2007)

    Chapter  Google Scholar 

  23. Gharaviri, A., Dehghan, F., Teshnelab, M., Abrishami, H.M.: Comparison of Neural Networks, ANFIS, and SVM Classifiers for PVC Arrhythmia Detection. In: Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, vol. 2, pp. 750–755. IEEE, Kunming (2008)

    Google Scholar 

  24. Jang, J.S.R.: ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Systems, Man, Cybernetics 23, 665–685 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sykes, E.R. (2010). Preliminary Findings of Visualization of the Interruptible Moment. In: Mewhort, D.J.K., Cann, N.M., Slater, G.W., Naughton, T.J. (eds) High Performance Computing Systems and Applications. HPCS 2009. Lecture Notes in Computer Science, vol 5976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12659-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12659-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12658-1

  • Online ISBN: 978-3-642-12659-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics