Skip to main content

Coarse In-Building Localization with Smartphones

  • Conference paper

Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST,volume 35)

Abstract

Geographic location of a person is important contextual information that can be used in a variety of scenarios like disaster relief, directional assistance, context-based advertisements, etc. GPS provides accurate localization outdoors but is not useful inside buildings. We propose an coarse indoor localization approach that exploits the ubiquity of smart phones with embedded sensors. GPS is used to find the building in which the user is present. The Accelerometers are used to recognize the user’s dynamic activities (going up or down stairs or an elevator) to determine his/her location within the building. We demonstrate the ability to estimate the floor-level of a user. We compare two techniques for activity classification, one is naive Bayes classifier and the other is based on dynamic time warping. The design and implementation of a localization application on the HTC G1 platform running Google Android is also presented.

Keywords

  • Activity Recognition
  • Dynamic Time Warping
  • Accelerometer Data
  • Acceleration Data
  • Indoor Localization

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This work was supported in part by NSF grant CCR-0120778 (CENS: Center for Embedded Networked Sensing), and by a gift from the Okawa Foundation. It was initiated as a project for the graduate course CS 546: Intelligent Embedded Systems taught at USC in Spring 2009.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-12607-9_25
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-12607-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Google Android, http://www.android.com/

  2. Aalto, L., Göthlin, N., Korhonen, J., Ojala, T.: Bluetooth and wap push based location-aware mobile advertising system. In: MobiSys 2004: Proceedings of the 2nd international conference on Mobile systems, applications, and services, pp. 49–58. ACM, New York (2004)

    Google Scholar 

  3. Baek, J., Lee, G., Park, W., Yun, B.-J.: Accelerometer signal processing for user activity detection, Berlin, Germany, vol. 3, pp. 610–617 (2004)

    Google Scholar 

  4. Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based user location and tracking system. In: International Conference on Computer Communications (INFOCOM), pp. 775–784 (2000)

    Google Scholar 

  5. Choudhury, T., Borriello, G., Consolvo, S., Haehnel, D., Harrison, B., Hemingway, B., Hightower, J., Klasnja, P., Koscher, K., Lamarca, A., Landay, J.A., Legrand, L., Lester, J., Rahimi, A., Rea, A., Wyatt, D.: The mobile sensing platform: An embedded activity recognition system. IEEE Pervasive Computing 7(2), 32–41 (2008)

    CrossRef  Google Scholar 

  6. Jeon, A., Kim, J., Kim, I., Jung, J., Ye, S., Ro, J., Yoon, S., Son, J., Kim, B., Shin, B., Jeon, G.: Implementation of the personal emergency response system using a 3-axial accelerometer. In: 6th International Special Topic Conference on Information Technology Applications in Biomedicine, ITAB 2007, vol. X, pp. 223–226 (November 2007)

    Google Scholar 

  7. Jeon, A., Kim, J., Kim, I., Jung, J., Ye, S., Ro, J., Yoon, S., Son, J., Kim, B., Shin, B., Jeon, G.: Implementation of the personal emergency response system using a 3-axial accelerometer, Tokyo, Japan, pp. 223–226 (2008)

    Google Scholar 

  8. Krause, A., Ihmig, M., Rankin, E., Leong, D., Gupta, S., Siewiorek, D., Smailagic, A., Deisher, M., Sengupta, U.: Trading off prediction accuracy and power consumption for context-aware wearable computing. In: ISWC 2005: Proceedings of the Ninth IEEE International Symposium on Wearable Computers, Washington, DC, USA, pp. 20–26. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  9. Mathie, M., Coster, A., Lovell, N., Celler, B.: Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiological Measurement 25(2), 1–20 (2004)

    CrossRef  Google Scholar 

  10. Miluzzo, E., Lane, N.D., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman, S.B., Zheng, X., Campbell, A.T.: Sensing meets mobile social networks: the design, implementation and evaluation of the cenceme application. In: SenSys 2008: Proceedings of the 6th ACM conference on Embedded network sensor systems, pp. 337–350. ACM, New York (2008)

    Google Scholar 

  11. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  12. Muscillo, R., Conforto, S., Schmid, M., Caselli, P., D’Alessio, T.: Classification of motor activities through derivative dynamic time warping applied on accelerometer data, August 2007, pp. 4930–4933 (2007)

    Google Scholar 

  13. Otsason, V., Varshavsky, A., LaMarca, A., de Lara, E.: Accurate gsm indoor localization, Berlin, Germany, pp. 141–58 (2005)

    Google Scholar 

  14. Preece, S., Goulermas, J., Kenney, L., Howard, D., Meijer, K., Crompton, R.: Activity identification using body-mounted sensors-a review of classification techniques. Physiological Measurement 30(4), R1–R33 (2009)

    CrossRef  Google Scholar 

  15. Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data, Pittsburgh, PA, United states, vol. 3, pp. 1541–1546 (2005)

    Google Scholar 

  16. Savvides, A., Han, C.-C., Srivastava, M.B.: Dynamic fine-grained localization in ad-hoc networks of sensors. In: International Conference on Mobile Computing and Networking (MOBICOM), pp. 166–179 (2001)

    Google Scholar 

  17. Varshavsky, A., de Lara, E., Hightower, J., LaMarca, A., Otsason, V.: GSM indoor localization. Pervasive and Mobile Computing 3(6), 698–720 (2007)

    CrossRef  Google Scholar 

  18. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system. ACM Transactions on Information Systems 10(1), 91–102 (1992)

    CrossRef  Google Scholar 

  19. Ward, A., Jones, A., Hopper, A.: A new location technique for the active office. IEEE Personal Communications 4(5), 42–47 (1997)

    CrossRef  Google Scholar 

  20. Woodman, O., Harle, R.: Pedestrian localisation for indoor environments. In: UbiComp 2008: Proceedings of the 10th international conference on Ubiquitous computing, pp. 114–123. ACM, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Parnandi, A. et al. (2010). Coarse In-Building Localization with Smartphones. In: Phan, T., Montanari, R., Zerfos, P. (eds) Mobile Computing, Applications, and Services. MobiCASE 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12607-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12607-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12606-2

  • Online ISBN: 978-3-642-12607-9

  • eBook Packages: Computer ScienceComputer Science (R0)