Skip to main content

Efficient Numerics for Nonlinear Model Predictive Control

  • Conference paper
  • First Online:
Recent Advances in Optimization and its Applications in Engineering

Summary

We review a closely connected family of algorithmic approaches for fast and real–time capable nonlinear model predictive control (NMPC) of dynamic processes described by ordinary differential equations or index-1 differential-algebraic equations. Focusing on active–set based algorithms, we present emerging ideas on adaptive updates of the local quadratic subproblems (QPs) in a multi–level scheme. Structure exploiting approaches for the solution of these QP subproblems are the workhorses of any fast active–set NMPC method. We present linear algebra tailored to the QP block structures that act both as a preprocessing and as block structured factorization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Albersmeyer, D. Beigel, C. Kirches, L. Wirsching, H. Bock, and J. Schlöder. Fast nonlinear model predictive control with an application in automotive engineering. In L. Magni, D. Raimondo, and F. Allgöwer, editors, Lecture Notes in Control and Information Sciences, volume 384, pages 471–480. Springer Verlag Berlin Heidelberg, 2009.

    Google Scholar 

  2. J. Albersmeyer and H. Bock. Sensitivity Generation in an Adaptive BDFMethod. In H. G. Bock, E. Kostina, X. Phu, and R. Rannacher, editors, Modeling, Simulation and Optimization of Complex Processes: Proceedings of the International Conference on High Performance Scientific Computing, March 6– 10, 2006, Hanoi, Vietnam, pages 15–24. Springer Verlag Berlin Heidelberg New York, 2008.

    Google Scholar 

  3. R. Bartlett and L. Biegler. QPSchur: A dual, active set, schur complement method for large-scale and structured convex quadratic programming algorithm. Optimization and Engineering, 7:5–32, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Best. An Algorithm for the Solution of the Parametric Quadratic Programming Problem, chapter 3, pages 57–76. Applied Mathematics and Parallel Computing. Physica-Verlag, Heidelberg, 1996.

    Google Scholar 

  5. H. Bock, M. Diehl, E. Kostina, and J. Schlöder. Constrained Optimal Feedback Control for DAE. In L. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van Bloemen Waanders, editors, Real-Time PDE-Constrained Optimization, chapter 1, pages 3–24. SIAM, 2007.

    Google Scholar 

  6. H. Bock, M. Diehl, P. Kühl, E. Kostina, J. Schl¨eder, and L. Wirsching. Numerical methods for efficient and fast nonlinear model predictive control. In R. Findeisen, F. Allgöwer, and L. T. Biegler, editors, Assessment and future directions of Nonlinear Model Predictive Control, volume 358 of Lecture Notes in Control and Information Sciences, pages 163–179. Springer, 2005.

    Google Scholar 

  7. H. Bock and K. Plitt. A Multiple Shooting algorithm for direct solution of optimal control problems. In Proceedings of the 9th IFAC World Congress, pages 243–247, Budapest, 1984. Pergamon Press. Available at http://www.iwr.uniheidelberg.de/groups/agbock/FILES/Bock1984.pdf.

  8. A. Bryson and Y.-C. Ho. Applied Optimal Control. Wiley, New York, 1975.

    Google Scholar 

  9. M. Diehl, H. Bock, J. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer. Realtime optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J. Proc. Contr., 12(4):577–585, 2002.

    Article  Google Scholar 

  10. M. Diehl, H. Ferreau, and N. Haverbeke. Efficient numerical methods for nonlinear mpc and moving horizon estimation. In L. Magni, D. Raimondo, and F. Allgöwer, editors, Nonlinear Model Predictive Control, volume 384 of Springer Lecture Notes in Control and Information Sciences, pages 391–417. Springer- Verlag, Berlin, Heidelberg, New York, 2009.

    Chapter  Google Scholar 

  11. M. Diehl, P. Kuehl, H. Bock, and J. Schlöder. Schnelle Algorithmen für die Zustands- und Parameterschätzung auf bewegten Horizonten. Automatisierungstechnik, 54(12):602–613, 2006.

    Article  Google Scholar 

  12. H. Ferreau, H. Bock, and M. Diehl. An online active set strategy to overcome the limitations of explicit MPC. International Journal of Robust and Nonlinear Control, 18(8):816–830, 2008.

    Article  MathSciNet  Google Scholar 

  13. R. Fletcher. Resolving degeneracy in quadratic programming. Numerical Analysis Report NA/135, University of Dundee, Dundee, Scotland, 1991.

    Google Scholar 

  14. P. Gill, G. Golub, W. Murray, and M. A. Saunders. Methods for modifying matrix factorizations. Mathematics of Computation, 28(126):505–535, 1974.

    MATH  MathSciNet  Google Scholar 

  15. P. Gill, W. Murray, and M. Saunders. User’s Guide For QPOPT 1.0: A Fortran Package For Quadratic Programming, 1995.

    Google Scholar 

  16. G. Golub and C. van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, 3rd edition, 1996.

    Google Scholar 

  17. A. Griewank. Evaluating Derivatives, Principles and Techniques of Algorithmic Differentiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia, 2000.

    Google Scholar 

  18. N. Haverbeke, M. Diehl, and B. de Moor. A structure exploiting interior-point method for moving horizon estimation. In Proceedings of the 48th IEEE Conference on Decision and Control (CDC09), pages 1–6, 2009.

    Google Scholar 

  19. C. Kirches, H. Bock, J. Schlöder, and S. Sager. Block structured quadratic programming for the direct multiple shooting method for optimal control. Optimization Methods and Software, 2010. DOI 10.1080/10556781003623891.

    Google Scholar 

  20. C. Kirches, H. Bock, J. Schlöder, and S. Sager. A factorization with update procedures for a KKT matrix arising in direct optimal control. Mathematical Programming Computation, 2010. (submitted). Available Online: http://www.optimization-online.org/DBHTML/2009/11/2456.html.

  21. C. Kirches, S. Sager, H. Bock, and J. Schlöder. Time-optimal control of automobile test drives with gear shifts. Optimal Control Applications and Methods, 31(2):137–153, 2010.

    Article  MathSciNet  Google Scholar 

  22. D. Leineweber. Efficient reduced SQP methods for the optimization of chemical processes described by large sparse DAE models, volume 613 of Fortschritt- Berichte VDI Reihe 3, Verfahrenstechnik. VDI Verlag, Düsseldorf, 1999.

    Google Scholar 

  23. D. Leineweber, I. Bauer, A. Schäfer, H. Bock, and J. Schlöder. An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization (Parts I and II). Computers and Chemical Engineering, 27:157– 174, 2003.

    Article  Google Scholar 

  24. D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Constrained model predictive control: stability and optimality. Automatica, 26(6):789–814, 2000.

    Article  MathSciNet  Google Scholar 

  25. L. Petzold, S. Li, Y. Cao, and R. Serban. Sensitivity analysis of differentialalgebraic equations and partial differential equations. Computers and Chemical Engineering, 30:1553–1559, 2006.

    Article  Google Scholar 

  26. K. Plitt. Ein superlinear konvergentes Mehrzielverfahren zur direkten Berechnung beschränkter optimaler Steuerungen. Diploma thesis, Rheinische Friedrich–Wilhelms–Universität zu Bonn, 1981.

    Google Scholar 

  27. C. V. Rao, J. B. Rawlings, and D. Q. Mayne. Constrained state estimation for nonlinear discrete-time systems: Stability and moving horizon approximations. IEEE Transactions on Automatic Control, 48(2):246–258, 2003.

    Article  MathSciNet  Google Scholar 

  28. C. Rao, S. Wright, and J. Rawlings. Application of interior-point methods to model predictive control. Journal of Optimization Theory and Applications, 99:723–757, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  29. C. Schmid and L. Biegler. Quadratic programming methods for tailored reduced Hessian SQP. Computers & Chemical Engineering, 18(9):817–832, September 1994.

    Article  Google Scholar 

  30. M. Steinbach. Structured interior point SQP methods in optimal control. Zeitschrift für Angewandte Mathematik und Mechanik, 76(S3):59–62, 1996.

    MATH  MathSciNet  Google Scholar 

  31. L. Wirsching. An SQP algorithm with inexact derivatives for a direct multiple shooting method for optimal control problems. Diploma thesis, Universität Heidelberg, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kirches .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer -Verlag Berlin Heidelberg

About this paper

Cite this paper

Kirches, C., Wirsching, L., Sager, S., Bock, H.G. (2010). Efficient Numerics for Nonlinear Model Predictive Control. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds) Recent Advances in Optimization and its Applications in Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12598-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12598-0_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12597-3

  • Online ISBN: 978-3-642-12598-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics