Skip to main content

Velocity, Temperature, and Concentration Fields on Laminar Forced Film Condensation of Vapour–Gas Mixture

  • Chapter
  • First Online:
Theory of Heat Transfer with Forced Convection Film Flows

Part of the book series: Heat and Mass Transfer ((HMT))

  • 1732 Accesses

Abstract

A series of treatments on concentration- and temperature-dependent physical properties are successfully treated for laminar forced film condensation of vapour–gas mixture. The physical property factors of liquid film are temperature-dependent. The physical property factors of vapour–gas mixture film are concentration-dependent in the governing similarity mathematical model; however, after the analysis, it is found that they cover the temperature-dependent physical property factors of vapour and gas. Obviously, the concentration-dependent physical properties of vapour–gas mixture are closely dependent on the temperature-dependent physical properties of vapour and gas. Finally, and a set of physical property factors of governing similarity mathematical models becomes functions of the dimensionless temperature and concentration for convenient numerical calculation. Seven interfacial matching conditions, such as those for two-dimensional velocity component balances, shear force balance, mass flow rate balance, temperature balance, heat transfer balance, concentration condition, as well as the balance between the condensate mass flow and vapour mass diffusion, are considered and rigorously satisfied in the numerical calculation. Take the laminar forced film condensation of water vapour–air mixture as an example of the condensation, a formulation for rigorous determination of the water vapour condensate saturated temperature with variation of the vapour partial pressure is applied for rigorous determination of interfacial vapour saturation temperature. By means of the provided iterative calculation procedure, interfacial vapour saturation temperature is evaluated finally. All these lead to rigorous and reliable numerical results on the laminar forced film condensation of vapour–gas mixture. A system of rigorous numerical results is obtained for laminar forced film condensation of water vapour–air mixture, including velocity, temperature and concentration fields of the two-phase film flows. It is found that the noncondensable gas strongly reduced the wall subcooled grade, because it strongly reduces the interfacial vapour saturation temperature. Increasing the wall temperatures t w causes decreasing the condensate liquid film thickness obviously, increasing the wall temperature gradient obviously, and increasing the vapour–gas mixture film thickness at accelerative pace. Furthermore, increasing the bulk water vapour mass fraction \(C_{mv,\infty}\)causes increasing the condensate liquid film velocity and thickness obviously, decreasing the wall temperature gradient obviously, and increasing the vapour–gas mixture film thickness obviously. However, with increasing the wall temperature, the effect of the bulk vapour mass fraction on the two-phase film flows will decrease. The study results of this work for laminar forced film condensation from vapour–gas mixture is a basis on a successive investigation for its heat and mass transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.Y. Shang, L.C.Zhong, Extensive study on laminar free film condensation from vapor–gas mixture. Int. J. Heat Mass Transfer 51, 4300–4314 (2008)

    Article  MATH  Google Scholar 

  2. D.Y. Shang, T. Adamek, Study on laminar film condensation of saturated steam on a vertical flat plate for consideration of various physical factors including variable thermophysical properties. Wärme- und Stoffübertragung 30, 89–100 (1994)

    Google Scholar 

  3. D.Y. Shang, B.X. Wang, An extended study on steady-state laminar film condensation of a superheated vapour on an isothermal vertical plate. Int. J. Heat Mass Transfer .40(4), 931–941 (1997)

    Article  MATH  Google Scholar 

  4. D.Y. Shang, Free Convection Film Flows and Heat Transfer (Springer, Berlin, Heidelberg and New York, NY, 2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyi Shang .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shang, D. (2010). Velocity, Temperature, and Concentration Fields on Laminar Forced Film Condensation of Vapour–Gas Mixture. In: Theory of Heat Transfer with Forced Convection Film Flows. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12581-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12581-2_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12580-5

  • Online ISBN: 978-3-642-12581-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics