Skip to main content

Part of the book series: Heat and Mass Transfer ((HMT))

  • 1738 Accesses

Abstract

A new similarity analysis method is proposed in this book through a complete theoretical derivation. It leads to establishing systems of complete similarity governing mathematical models for deep investigations of laminar forced convection and its film flows for resolving the challenges in the research. The proposed novel similarity variables, the dimensionless velocity components, directly describe momentum field, which shows that the new similarity analysis method is different from the traditional Falkner–Skan transformation with the dimensionless function variable f(η) for indirect description of the momentum field.With the new similarity analysis method, it is convenient to consider variable physical properties, especially to conveniently treat the interfacial physical matching conditions of two-phase film condensation and even to conveniently investigate the effect of noncondensable gas on the film condensation, compared to those with the traditional Falkner–Skan-type transformation. A series of results on rigorous analysis and calculation are reported for effects of the viscous thermal dissipation and variable physical properties on heat transfer of laminar forced convection, and a series of related prediction equations are provided. Furthermore, the complete similarity mathematical models for forced film condensation of pure vapour and vapour–gas mixture are developed, respectively, based on the new similarity analysis method, in which the coupled effect of the condensate liquid film flow and the induced vapour film flow is considered. The vapour film flow for the general forced film condensation involves vapour momentum and temperature boundary layers, while the laminar forced film condensation of vapour–gas mixture flow involves the additional concentration boundary layer. An even big challenge is resolved for rigorous calculation of the interfacial vapour saturation temperature, a decisive issue of heat and mass transfer for laminar film condensation of vapour–gas mixture. Then, it is realized to rigorously evaluate heat and mass transfer of the forced film condensation of vapour–gas mixture. Furthermore, a condensate mass–energy transformation equation is created under the new similarity analysis system, for a better clarification of the internal relations between heat and mass transfer of the forced film condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Prandtl, Uber Flussigkeits bewegung bei sehr kleiner Reibung. Verhaldlg III Int. Math. Kong (Heidelberg, Teubner, 1904), pp.484–491, Also available in translation as: Motion of fluids with very little viscosity. NACA TM 452 (March 1928)

    Google Scholar 

  2. H. Blasius, Grenzschichten in Flussigkeiten mit kleiner Reibung. Z. Math. Phys. 56, 1–37 (1908)

    Google Scholar 

  3. E. Pohlhausen, Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung. . Angew. Math. Mech. 1, 115–121 (1921)

    Article  Google Scholar 

  4. V.M. Falkner, S.W. Skan, Some approximate solutions of the boundary layer equations. Phil. Mag. 12, 865 (1931)

    MATH  Google Scholar 

  5. E.R.G. Eckert, O. Drewitz, The heat transfer to a plate in flow at high speed. NASA Tech. Mem. 1045 (1943), Transl. of Der Waermeuebergang an einer mit grosser Geschwindigkeit Laengs angestroemte platte, Forschung auf dem Gebiete des Ingenieurwesens 11, 116–124 (1940)

    Google Scholar 

  6. E.R.van Driest, The Laminar Boundary Layer with Variable Fluid Properties (North Americaln Aviation rep. AL-1866, Los Angelos, 1954)

    Google Scholar 

  7. G.W. Morgan, W.H. Warmer, On heat transfer in laminar boundary layers at a high Prandtl numbers. J. Aeronaut. Sci. 23, 937–948 (1956)

    MATH  Google Scholar 

  8. N.B. Cohen, Boundary-layer similar solutions and correlation equations for laminar heat transfer distribution in equilibrium air at velocities up to 41000 feet per second, NASA Tech. Rep. R-118 (1961)

    Google Scholar 

  9. R.E. Wilson, Real-gas laminar-boundary layer skin friction and heat transfer. J. Aerosp. Sci. 929, 640–647 (1962)

    Google Scholar 

  10. R.A. Seban, Laminar Boundary Layer of a Liquid with Variable Viscosity, in Heat Transfer Thermodynamics and Education, ed. by H.A. Johnson. Boelter Annyversary Volume (Mcgtraw-Hiill, New York, NY, 1964), pp.319–329

    Google Scholar 

  11. S.C.R. Dennis, N. Smith, Forced convection from a heated flat plate. J. Fluid Mech. 24, 509–519, Part: Part3 (1966)

    Article  Google Scholar 

  12. G. Poots, G.F. Raggett, Theoretical results for variable property, laminar boundary layers in water. Int.J. Heat Mass Transfer 10, 597–610 (1967)

    Article  Google Scholar 

  13. R. Narasimh, N. Afzal, Laminar boundary layer on a flat plate at low Prandtl number. Int. J. Heat Mass Transfer, 14(2), 279–292 (1971)

    Article  Google Scholar 

  14. S. Churchill, H. Ozeo, Correlations for laminar forced convection in flow over an isothermal flat plate and in developing and fully developed flow in an isothermal tube. J. Heat Transfer Trans. ASME. 95(4), 540–541 (1973)

    Article  Google Scholar 

  15. V.M. Soundalgekar, H.S. Takhar, M. Singh, Velocity and temperature-field in MHD Falkner-Skan flow. J. Phys. Soc Japan, 50(9), 3139–3143 (1981)

    Article  Google Scholar 

  16. C.A. Forbrich, improved solutions to the Falkner-Skan boundary-layer equation. AIAA J. 20, 1306–1307 (1982)

    Article  Google Scholar 

  17. H. Chuang, improved solutions to the Falkner-Skan boundary-layer equation– comment. AIAA J. 23, 2004–2005 (1985)

    Article  Google Scholar 

  18. Lin HT, Lin LK, Similarity solutions for laminar forced-convection heat transfer from wedged to fluids of any Prandtl number. Int. J. Heat Mass Transfer 30(6), 1111–1118 (1987)

    Article  Google Scholar 

  19. H. Herwig, G. Wickern, The effect of variable properties on laminar boundary layer flow. Warme und Stoffubertragung 20, 47–57 (1986)

    Article  Google Scholar 

  20. L. Yu, L. Yili, New Series expansion method for the solution of the Falkner-Skan equations. AIAA J 27, 1453–1455 (1989)

    Article  Google Scholar 

  21. A. Kumar, B.B. Singh, Some aspects related to the asymptotic solutions of the laminar boundary-layer equations with heat-flux. Astrophys. Space Sci. 165(1), 41–49 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. J.S. Lim, A. Bejan, J.H. Kim, The optimal thickness of a wall with convection on one side. Int. J. Heat Mass Transfer. 35(7), 1673–1679 (1992)

    Article  MATH  Google Scholar 

  23. M. Vynnycky, S. Kimura, K. Kanev, etal., Forced convection heat transfer from a flat plate: The conjugate problem. Int. J. Heat Mass Transfer 41(1), 45–59 (1998)

    Article  MATH  Google Scholar 

  24. G. Polidori, M. Rebay, J. Padet, Revisited results about the theory of steady laminar forced convection for 2D external boundary layer flows. Int. J. Thermal Sci. 38(5), 398–409 (1999)

    Article  Google Scholar 

  25. M.A. Hossain, M.S. Munir, Mixed convection flow from a vertical flat plate with temperature dependent viscosity. Int. J. Thermal Sci. 39(2), 173–183 (2000)

    Article  Google Scholar 

  26. A. Postelnicu, T. Grosan, I. Pop, The effect of variable viscosity on forced convection flow past a horizontal flat plate in a porous medium with internal heat generation. Mech. Res. Commun. 28(3), 331–337 (2001)

    Article  MATH  Google Scholar 

  27. D.A. Nield, A.V. Kuznetsov, Boundary-layer analysis of forced convection with a plate and porous substrate. Acta Mechanica 166(1–4), 141–148 (2003)

    Article  MATH  Google Scholar 

  28. G.E. Cossali, Similarity solutions of energy and momentum boundary layer equations for a power-law shear driven flow over a semi-infinite flat plate. Eur. J. Mech B-Fluids, 25(1), 18–32 (2006)

    Article  MATH  Google Scholar 

  29. Weyburne DW, Approximate heat transfer coefficients based on variable thermophysical properties for laminar flow over a uniformly heated flat plate. Heat Mass Transfer 44(7), 805–813 (2008)

    Article  Google Scholar 

  30. M.W. Rubenson, H.A. Johnson, A summary of skin friction and heat transfer solution of the laminar boundary layer on a flat plate. Proc. 1948 Heat transfer fluid Mech. Inst.; also Trans. ASME 71, 383–388 (1949)

    Google Scholar 

  31. E.R.G. Eckert, R.M. Drake, Analysis of Heat and Mass Transfer (McGraw-Hill, New York, NY 1972)

    MATH  Google Scholar 

  32. J.W. Rose, Boundary-Layer Flow on a Flat-Plate. Int. J. Heat Mass Transfer, 22(6), 969–969 (1979)

    Article  Google Scholar 

  33. B. Louis, etal., Convective Heat Transfer, 2nd edn. (Wiley, New York, NY, 1993)

    Google Scholar 

  34. S. Kakaç, etal., Convective Heat Transfer, 2nd edn. (CRC Press, Boca Raton, FL), p.431 (1994)

    Google Scholar 

  35. I. Pop, D.B. Ingham, Convective Heat Transfer– Mathematical and Computational Modelling of Viscous Fluids and Porous Media (Elsevier, Amsterdam, 2001)

    Google Scholar 

  36. T. Cebeci, Convective Heat Transfer, 2nd edn (Springer, Heidelberg 2002)

    MATH  Google Scholar 

  37. H. Schlichting, Boundary-Layer Theory (Springer, Heidelberg 2004)

    Google Scholar 

  38. W. Nusselt, Die Oberflaechenkondensation des Wasserdampfes, Z VDI, 60, 541–546, 569–575 (1916)

    Google Scholar 

  39. R.D. Cess, Laminar film condensation on a flat plate in the absence of a body force, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 11, 426–433 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  40. J.C.Y. Koh, Film condensation in a forced-convection boundary-layer flow. Int J Heat Mass Transfer 5, 941–954 (1962)

    Article  Google Scholar 

  41. I.G. Shekriladze, V.I. Gomelauri, Theoretical study of laminar film condensation of flowing vapor. Int. J. Heat Mass Transfer 9, 581–591 (1966)

    Article  Google Scholar 

  42. Jacobs HR, An integral treatment of combined body force and forced convection in laminar film condensation. Int. J. Heat Mass Transfer 9, 637–648 (1966)

    Article  Google Scholar 

  43. P. Beckett, G. Poots, Laminar film condensation in forced flows, The Quarterly J. Mech. Appl. Maths 25(1), 125–152 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  44. T. Fujii, H. Uehara, Laminar filmwise condensation on a vertical surface, Int.I. Heat Mass Transfer. 15, 217–233 (1972)

    Article  Google Scholar 

  45. H. Honda, T. Fujii, Condensation of a flowing vapor on a horizontal tube– numerical analysis on a conjugate heat transfer problem, Trans ASME. J Heat Transfer 106, 841–848 (1984)

    Article  Google Scholar 

  46. J.W. Rose, A new interpolation formula for forced-convection on a horizontal surface, Trans ASME. J Heat Transfer 111, 818–819(1989)

    Article  Google Scholar 

  47. S.B. Memory, V.H. Adams, P.J. Marto, Free and forced convection laminar film condensation on horizontal elliptical tubes, Int. J. Heat Mass Transfer, 40(14), 3395–3406 (1997)

    Article  MATH  Google Scholar 

  48. F. Méndez, C. Trevin–, Analysis of a forced laminar film condensation including finite longitudinal heat conduction effects, Heat Mass Transfer 39, 489–498 (2003)

    Google Scholar 

  49. D. Butterwoth, R.G. Sardesai, P. Griffith, A.E. Bergles, Condensation, In: Heat Exchanger Design Handbook (Hemisphere, Washington, DC, 1983) Chapter 2.6

    Google Scholar 

  50. P.J. Marto, Fundamemtals of condensation, in Two-Phase Flow Heat Exchangers: Thermal-Hydraulic Fundamentals and Design, eds. by S. Kakac, A.E. Bergles, E.Q. Fernandes, (Kluwer Academic, Dordrecht, 1988), pp.221–291

    Google Scholar 

  51. T. Fujii, Theory of Laminar Film Condensation (Springer, Berlin, 1991)

    MATH  Google Scholar 

  52. J.G. Collier, J.R. Thome, in Convective Boiling and Condensation, 3rd edn (Oxford University Press, New York, NY 1996), pp.430–487

    Google Scholar 

  53. J.W. Rose, Condensation heat transfer. Heat Mass Transfer 35, 479–485 (1999)

    Article  Google Scholar 

  54. W.J. Minkowycz, E.M. Sparrow, Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties, and diffusion. Int. J. Heat Mass Transfer 9, 1125–1144 (1966)

    Article  Google Scholar 

  55. D.G. Kroger, W.M. Rohsenow, Condensation heat transfer in presence of non-condensable gas. Int. J. Heat Mass Transfer 11(1), 15–26 (1968)

    Article  Google Scholar 

  56. L. Slegers, R.A. Seban, Laminar film condensation of steam containing small concentration of air. Int. J. Heat Mass Transfer 13, 1941–1947 (1970)

    Article  Google Scholar 

  57. V.E. Denny, A.F. Mills, V.J. Jusionis, Laminar film condensation from a steam-air mixture undergoing forced flow down a vertical surface. J. Heat Transfer 93, 297–304 (1971)

    Article  Google Scholar 

  58. R.K. Oran, C.J. Chen, Effect of lighter noncond-Nsa3l -Gas on laminar film condensation over a vertical plate. Int. J. Heat Mass Transfer 18, 993–996 (1975)

    Article  Google Scholar 

  59. K. Lucas, Combined body forced and forced-convection in laminar-film condensation of mixed vapour-Integral and finite-difference treatment, Int. J. Heat Mass Transfer 19(11), 1273–1280 (1976)

    Article  MathSciNet  Google Scholar 

  60. V. M. Borishanskiy, O.P. Volkov, Effect of uncondensable gases content on heat transfer in steam condensation in a vertical tube. Heat Transfer Soviet Res. 9, 35–41 (1977)

    Google Scholar 

  61. J.W. Rose, Approximate equations for forced-convection in the presence of a non-condensing gas on a flat-plate and horizontal tube. Int. J. Heat Mass Transfer. 23, 539–545 (1980)

    Article  Google Scholar 

  62. S. Kotake, Effect of a small amount of noncondensable gas on film condensation of multicomponent mixtures. Int. J. Heat Mass Transfer 28(2), 407–414 (1985)

    Article  Google Scholar 

  63. P.J. Vernier and P. Solignac, A test of some condensation models in the presence of a noncondensable gas against the ecotra experiment. Nucl. Technol. 77(1), 82–91 (1987)

    Google Scholar 

  64. S.M. Chiaasaan, B.K. Kamboj, S.I. Abdel-Khalik, Two-fluid modeling of condensation in the presence of noncondensables in two-phase channel flows. Nucl. Sci. Eng. 119, 1–17 (1995)

    Google Scholar 

  65. V. Srzic, H.M. Soliman, S.J. Ormiston, Analysis of laminar mixedconvection condensation on isothermal plates using the full boundary layer equations: Mixtures of a vapor and a lighter gas. Int. J. Heat Mass Transfer 42(4), 685–695 (1999)

    Article  MATH  Google Scholar 

  66. E.C. Siow, S.J. Ormiston, H.M. Soliman, A two-phase model for laminar film condensation from steam–air mixtures in vertical parallel-plate channels. Heat Mass Transfer 40(5), 365–375 (2004)

    Article  Google Scholar 

  67. S.T.Revankar, D. Pollock, Laminar film condensation in a vertical tube in the presence of noncondensable gas. Appl. Math. Model. 29(4), 341–359 (2005)

    Article  MATH  Google Scholar 

  68. S. Oh, S.T. Revankar, Experimental and theoretical investigation of film condensation with noncondensable gas. Int. J. Heat Mass Transfer 49(15–16), 2523–2534 (2006)

    Article  Google Scholar 

  69. Tamasawa, Advances in Condensation Heat Transfer, Advances in Heat Transfer (Academic, New York, 1991), pp.55–139

    Google Scholar 

  70. K. Stephan, Heat Transfer in Condensation and Boiling (Springer, New York, NY, 1992)

    Google Scholar 

  71. T. Fujii, Theory of Laminar Film Condensation (Springer, New York, NY, 1991)

    MATH  Google Scholar 

  72. G.F. Hewitt, G.L. Shires, T.R. Bott, Process Heat Transfer (CRC Press, Boca Raton, FL, 1994)

    Google Scholar 

  73. D.R. Webb, Design of Multicomponent Condensera, Heat Exchanger Design Update, 21(1) (Begell House Publishers, New York, 1995)

    Google Scholar 

  74. D.Y. Shang, L.C. Zhong, Extensive study on laminar free film condensation from vapor–gas mixture. Int. J. Heat Mass Transfer 51, 4300–4314 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyi Shang .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shang, D. (2010). Introduction. In: Theory of Heat Transfer with Forced Convection Film Flows. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12581-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12581-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12580-5

  • Online ISBN: 978-3-642-12581-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics