Skip to main content

Matrix and Discrete Maximum Principles

  • Conference paper
Large-Scale Scientific Computing (LSSC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5910))

Included in the following conference series:

  • 2144 Accesses

Abstract

Qualitative properties play central role in constructing reliable numerical models for parabolic problems. One of such basic properties is the discrete maximum principle. In this paper we analyze its relation to the so-called matrix maximum principles. We analyze the different matrix maximum principles (Ciarlet, Stoyan and Ciarlet-Stoyan maximum principles) and their relation. Introducing the iterative algebraic problem (IAP) we show that the discrete maximum principles for discrete parabolic problems are more general than the algebraic maximum principles. We also analyze and compare the conditions which ensure the above qualitative properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ciarlet, P.G.: Discrete maximum principle for finite-difference operators. Aequationes Math. 4, 338–352 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  2. Faragó, I., Horváth, R.: Discrete maximum principle and adequate discretizations of linear parabolic problems. SIAM Sci. Comput. 28, 2313–2336 (2006)

    Article  MATH  Google Scholar 

  3. Fujii, H.: Some remarks on finite element analysis of time-dependent field problems. In: Theory and practice in finite element structural analysis, pp. 91–106. Univ. Tokyo Press, Tokyo (1973)

    Google Scholar 

  4. Karátson, J., Korotov, S.: Discrete maximum principles in finite element solutions of nonlinear problems with mixed boundary conditions. Numer. Math. 99, 669–698 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Stoyan, G.: On a maximum principle for matrices and on conservation of monotonicity with applications to discretization methods. Z. Angew. Math. Mech. 62, 375–381 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Stoyan, G.: On maximum principles for monotone matrices. Lin. Alg. Appl. 78, 147–161 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Faragó, I. (2010). Matrix and Discrete Maximum Principles. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2009. Lecture Notes in Computer Science, vol 5910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12535-5_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12535-5_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12534-8

  • Online ISBN: 978-3-642-12535-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics