Skip to main content

Numerical Homogenization of Bone Microstructure

  • Conference paper
Large-Scale Scientific Computing (LSSC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5910))

Included in the following conference series:

Abstract

The presented study is motivated by the development of methods, algorithms, and software tools for μFE (micro finite element) simulation of human bones. The voxel representation of the bone microstructure is obtained from a high resolution computer tomography (CT) image. The considered numerical homogenization problem concerns isotropic linear elasticity models at micro and macro levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelsson, O.: Iterative solution methods. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  2. Axelsson, O., Gustafsson, I.: Iterative methods for the Navier equations of elasticity. Comp. Meth. Appl. Mech. Engin. 15, 241–258 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brenner, S., Sung, L.: Nonconforming finite element methods for the equations of linear elasticity. Math. Comp. 57, 529–550 (1991)

    Article  MathSciNet  Google Scholar 

  4. Cowin, S.: Bone poroelasticity. J. Biomechanics 32, 217–238 (1999)

    Article  Google Scholar 

  5. Lawrence Livermore National Laborary, Scalable Linear Solvers Project, https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html

  6. Kohut, R.: The determination of Young modulus E and Poisson number ν of geocomposite material using mathematical modelling, private communication (2008)

    Google Scholar 

  7. Kolev, T., Margenov, S.: Two-level preconditioning of pure displacement non-conforming FEM systems. Numer. Lin. Algeb. Appl. 6, 533–555 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Margenov, S., Vutov, Y.: Preconditioning of Voxel FEM Elliptic Systems. TASK, Quaterly 11(1-2), 117–128 (2007)

    Google Scholar 

  9. Vertebral Body Data Set ESA29-99-L3, http://bone3d.zib.de/data/2005/ESA29-99-L3

  10. Wirth, A., Flaig, C., Mueller, T., Müller, R., Arbenz, P., van Lenthe, G.H.: Fast Smooth-surface micro-Finite Element Analysis of large-scale bone models. J. Biomechanics 41 (2008), doi:10.1016/S0021-9290(08)70100-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kosturski, N., Margenov, S. (2010). Numerical Homogenization of Bone Microstructure. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2009. Lecture Notes in Computer Science, vol 5910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12535-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12535-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12534-8

  • Online ISBN: 978-3-642-12535-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics