Advertisement

Characterization of Therapeutic Coatings on Medical Devices

  • Klaus WormuthEmail author
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 158)

Abstract

Therapeutic coatings on medical devices such as catheters, guide wires, and stents improve biocompatibility by favorably altering the chemical nature of the device/tissue or device/blood interface. Such coatings often minimize tissue damage (reduce friction), decrease chances for blood clot formation (prevent platelet adsorption), and improve the healing response (deliver drugs). Confocal Raman microscopy provides valuable information about biomedical coatings by, for example, facilitating the measurement of the thickness and swelling of frictionreducing hydrogel coatings on catheters and by determining the distribution of drug within a polymer-based drug-eluting coatings on stents. This chapter explores the application of Raman microscopy to the imaging of thin coatings of cross-linked poly(vinyl pyrrolidone) gels, parylene films, mixtures of dexamethasone with various polymethacrylates, and mixtures of rapamycin with hydrolysable (biodegradable) poly(lactide-co-glycolide) polymers. Raman microscopy measures the thickness and swelling of coatings, reveals the degree of mixing of drug and polymer, senses the hydrolysis of biodegradable polymers, and determines the polymorphic forms of drug present within thin therapeutic coatings on medical devices.

Keywords

Alkyl Chain Length Vinyl Pyrrolidone Raman Microscopy Butyl Methacrylate Raman Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Ratner, A. Hoffman, F. Schoen, J. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, 2nd edn. (Academic, San Diego, London, 2004)Google Scholar
  2. 2.
    B. Ratner, S. Bryant, Annu. Rev. Biomed. Eng. 6, 41 (2004)CrossRefGoogle Scholar
  3. 3.
    D. Klee, H. Höcker, Adv. Polym. Sci. 149, 1 (1999)CrossRefGoogle Scholar
  4. 4.
    P. Serruys, A. Gershlick, Handbook of Drug-Eluting Stents (Taylor & Francis, London, New York, NY, 2005)Google Scholar
  5. 5.
    G.H. Kim, S.W. Kim, Appl. Opt. 38, 5968 (1999)CrossRefADSGoogle Scholar
  6. 6.
    N. Everall, Spectroscopy 19, 22 (2004)Google Scholar
  7. 7.
    T. Bridges, M. Houlne, J. Harris, Anal. Chem. 76, 576 (2004)CrossRefGoogle Scholar
  8. 8.
    J. Fortin, T. Lu, Chemical Vapor Deposition Polymerization (Kluwer Academic, Dordrecht, 2003)Google Scholar
  9. 9.
    F. Siepmann, V.L. Brun, J. Siepmann, J. Control. Release 115, 298 (2006)CrossRefGoogle Scholar
  10. 10.
    R. Hilfiker, Polymorphism in the Pharmaceutical Industry (Wiley-VCH, Weinheim, 2006)Google Scholar
  11. 11.
    B. Hancock, G. Zografi, J. Pharm. Sci. 86, 1 (1997)CrossRefGoogle Scholar
  12. 12.
    H. Konno, L. Taylor, J. Pharm. Sci. 95, 2692 (2006)CrossRefGoogle Scholar
  13. 13.
    P. Marsac, S. Shamblin, L. Taylor, Pharm. Res. 23, 2417 (2006)CrossRefGoogle Scholar
  14. 14.
    D. Haaland, E. Thomas, Anal. Chem. 60, 1193 (1988)CrossRefGoogle Scholar
  15. 15.
    M. Pelletier, Appl. Spectrosc. 57, 20A (2003)CrossRefADSGoogle Scholar
  16. 16.
    M. Beiner, K. Schröter, E. Hempel, S. Reissig, E. Donth, Macromolecules 32, 6278 (1999)CrossRefADSGoogle Scholar
  17. 17.
    J. Anderson, M. Shive, Adv. Drug Deliv. Rev. 28, 5 (1997)CrossRefGoogle Scholar
  18. 18.
    A. Belu, C. Mahoney, K. Wormuth, J. Control. Release 126, 111 (2008)CrossRefGoogle Scholar
  19. 19.
    A. Hausberger, P. DeLuca, J. Pharm. Biomed. Anal. 13, 747 (1995)CrossRefGoogle Scholar
  20. 20.
    G. Kister, G. Cassanas, M. Vert, Polymer 39, 3335 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.SurModics, Inc.Eden PrairieUSA

Personalised recommendations