Raman Micro-spectral Imaging of Cells and Intracellular Drug Delivery Using Nanocarrier Systems

  • Christian MatthäusEmail author
  • Tatyana Chernenko
  • Luis Quintero
  • Miloš Miljković
  • Lara Milane
  • Amit Kale
  • Mansoor Amiji
  • Vladimir Torchilin
  • Max Diem
Part of the Springer Series in Optical Sciences book series (SSOS, volume 158)


Raman spectroscopy in combination with optical microscopy provides a new non-invasive method to examine and image cellular processes. Based on the spectral parameters of a cell’s components it is possible to image cellular organelles, such as the nucleus, chromatin, mitochondria, or lipid bodies, at the resolution of conventional microscopy. Several multivariate or spectral de-mixing algorithms, for example, hierarchical cluster analysis or orthogonal subspace projection, may be used to reconstruct an image of a cell. The non-invasive character of the technique as well as the associated chemical information may offer advantages over other imaging techniques such as fluorescence microscopy. Currently of particular interest are the uptake and intracellular fate of various pharmaceutical nanocarriers, which are widely used for drug delivery purposes, including intracellular drug and gene delivery. We have imaged the uptake and distribution patterns of several carrier systems over time. In order to distinguish the species of interest from their cellular environment spectroscopically, the carrier particles or the drug load itself may be labeled with deuterium. The first part of the chapter will briefly introduce the concept of Raman imaging in combination with multivariate data analysis on some simple cell models, after which the results of the uptake studies are discussed.


Raman Spectrum Hierarchical Cluster Analysis Multivariate Data Analysis Raman Microscopy Raman Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Schenke-Layland, I. Riemann, O. Damour, U. Stock, K. König, Adv. Drug Deliv. Rev. 58(7), 878 (2006)CrossRefGoogle Scholar
  2. 2.
    K. König, J. Microsc. 200(2), 83 (2000)CrossRefGoogle Scholar
  3. 3.
    A. García-Sáez, P. Schwille, Appl. Microbiol. Biotechnol. 76(2), 257 (2007)CrossRefGoogle Scholar
  4. 4.
    T. Kohl, P. Schwille, Adv. Biochem. Eng. Biotechnol. 95, 107 (2005)Google Scholar
  5. 5.
    N. Sijtsema, A. Tibbe, I. Segers-Nolten, A. Verhoeven, R. Weening, J. Greve, C. Otto, Biophys. J. 78(5), 2606 (2000)CrossRefGoogle Scholar
  6. 6.
    C. Otto, N. Sijtsema, J. Greve, Eur. Biophys. J. 27(6), 582 (1998)CrossRefGoogle Scholar
  7. 7.
    H.J. van Manen, Y. Kraan, D. Roos, C. Otto, Proc. Natl. Acad. Sci. USA 102(29), 10159 (2005)CrossRefGoogle Scholar
  8. 8.
    B. Wood, L. Hammer, L. Davis, D. McNaughton, J. Biomed. Opt. 10(1), 014005 (2005)CrossRefADSGoogle Scholar
  9. 9.
    S. Verrier, I. Notingher, J. Polak, L.L. Hench, Biopolymers 74(1–2), 157 (2004)CrossRefGoogle Scholar
  10. 10.
    K. Nithipatikom, M.J. McCoy, S. Hawi, K. Nakamoto, F. Adar, W. Campbell, Anal. Biochem. 322, 198 (2003)CrossRefGoogle Scholar
  11. 11.
    N. Uzunbajakava, A. Lenferink, Y. Kraan, E. Volokhina, G. Vrensen, J. Greve, C. Otto, Biophys. J. 84(6), 3968 (2003)CrossRefGoogle Scholar
  12. 12.
    N. Uzunbajakava, C. Otto, Opt. Lett. 2073–2075(28), 21 (2003)Google Scholar
  13. 13.
    C. Matthäus, S. Boydston-White, M. Miljković, M. Romeo, M. Diem, Appl. Spectrosc. 60(1), 1 (2006)CrossRefADSGoogle Scholar
  14. 14.
    N. Sijtsema, C. Otto, G. Segers-Nolten, A. Verhoeven, J. Greve, Biophys. J. 74(6), 3250 (1998)CrossRefADSGoogle Scholar
  15. 15.
    B. Wood, D. McNaughton, Expert Rev. Proteomics 3, 525 (2006)CrossRefGoogle Scholar
  16. 16.
    A. Feofanov, A. Grinchine, L. Shitova, T. Karmakova, R. Yakubovskaya, M. Egret-Charlier, P. Vigny, Biophys. J. 78(1), 499 (2000)CrossRefGoogle Scholar
  17. 17.
    S. Arzhantsev, A. Chikishev, N. Koroteev, J. Greeve, C. Otto, N. Sijtsema, J. Raman Spectrosc. 30, 205 (1999)CrossRefADSGoogle Scholar
  18. 18.
    C. Krafft, T. Knetschke, R. Funk, R. Salzer, Anal. Chem. 78(13), 4424 (2006)CrossRefGoogle Scholar
  19. 19.
    C. Matthäus, T. Chernenko, J. Newmark, C. Warner, M. Diem, Biophys. J. 93(2), 668 (2007)CrossRefADSGoogle Scholar
  20. 20.
    N. Keshava, Lincoln Lab. J. 14(1), 55 (2003)Google Scholar
  21. 21.
    J. Nascimento, J. Bioucas Dias, IEEE Trans. Geosci. Remote Sens. 43(4), 898 (2005)CrossRefADSGoogle Scholar
  22. 22.
    V. Torchilin, Annu. Rev. Biomed. Eng. 8, 343 (2006)CrossRefGoogle Scholar
  23. 23.
    C. Krafft, M. Kirsch, C. Beleites, G. Schackert, R. Salzer, Anal. Bioanal. Chem. 389(4), 1133 (2007)CrossRefGoogle Scholar
  24. 24.
    B. de Jong, T. Schut, K. Maquelin, T. van der Kwast, C. Bangma, D. Kok, G. Puppels, Anal. Chem. 78(22), 7761 (2006)CrossRefGoogle Scholar
  25. 25.
    C. Krishna, G. Sockalingum, R. Bhat, L. Venteo, P. Kushtagi, M. Pluot, M. Manfait, Anal. Bioanal. Chem. 387(5), 1649 (2007)CrossRefGoogle Scholar
  26. 26.
    C. Chang, IEEE Trans. Geosci. Remote Sens. 43(3), 502 (2005)CrossRefADSGoogle Scholar
  27. 27.
    S. Dipali, S. Kulkarni, G. Betageri, J. Pharm. Pharmacol. 48(11), 1112 (1996)Google Scholar
  28. 28.
    W. Liang, T. Levchenko, V. Torchilin, J. Microencapsul. 21, 151 (2004)CrossRefGoogle Scholar
  29. 29.
    V. Torchilin, T. Levchenko, A. Lukyanov, B. Kwah, A. Klibanov, R. Rammohan, G. Samokhin, K. Whiteman, Biochim. Biophys. Acta 1511, 397 (2001)CrossRefGoogle Scholar
  30. 30.
    D. Shenoy, M. Amiji, Int. J. Pharm. 293(1–2), 261 (2005)CrossRefGoogle Scholar
  31. 31.
    D. Naumann, Appl. Spectrosc. Rev. 36(2–3), 239 (2001)CrossRefADSGoogle Scholar
  32. 32.
    T. Spiro, Biological Applications of Raman Spectroscopy, vol. 1 (Wiley, 1987)Google Scholar
  33. 33.
    C. Yu, E. Gestl, K. Eckert, D. Allara, J. Irudayaraj, Cancer Detect. Prev. 30(6), 515 (2006)CrossRefGoogle Scholar
  34. 34.
    K. Short, S. Carpenter, J. Freyer, J. Mourant, Biophys. J. 88(6), 4274 (2005)CrossRefGoogle Scholar
  35. 35.
    T. Collins, M. Bootman, J. Exp. Biol. 206(12), 1993 (2003)CrossRefGoogle Scholar
  36. 36.
    C. Matthäus, T. Chernenko, L. Quintero, L. Milane, A. Kale, M. Amiji, V. Torchilin, M. Diem, Biophotonics: Photonic Solutions for Better Health Care, chap. Raman microscopic imaging of cells and applications monitoring the uptake of drug delivery systems (SPIE, Strasbourg, France, 2008).Google Scholar
  37. 37.
    J. van Blerkom, Reproduction 128, 269 (2004)CrossRefGoogle Scholar
  38. 38.
    C. Warner, J. Newmark, M. Comiskey, S. De Fazio, D. O’Malley, M. Rajadhyaksha, D. Townsend, S. McKnight, B. Roysam, P. Dwyer, C. DiMarzio, Reprod. Fertil. Dev. 16, 729 (2004)CrossRefGoogle Scholar
  39. 39.
    V. Torchilin, Eur. J. Pharm. Sci. 11(Supplement 2), S81 (2000)CrossRefGoogle Scholar
  40. 40.
    V. Torchilin, Adv. Drug Deliv. Rev. 57(1), 95 (2005)CrossRefGoogle Scholar
  41. 41.
    C. Plank, W. Zauner, E. Wagner, Adv. Drug Deliv. Rev. 34(1), 21 (1998)CrossRefGoogle Scholar
  42. 42.
    G. Kaul, M. Amiji, Pharm. Res. 22(6), 951 (2005)CrossRefGoogle Scholar
  43. 43.
    J. Panyam, V. Labhasetwar, Adv. Drug Deliv. Rev. 55(3), 329 (2003)CrossRefGoogle Scholar
  44. 44.
    J. Chawla, M. Amiji, Int. J. Pharm. 249(1–2), 127 (2002)CrossRefGoogle Scholar
  45. 45.
    V. Torchilin, Nat. Rev. Drug Discov. 4, 145 (2005)CrossRefGoogle Scholar
  46. 46.
    L. Serpe, M. Guido, R. Canaparo, E. Muntoni, R. Cavalli, P. Panzanelli, C. Della Pepal, A. Bargoni, A. Mauro, M. Gasco, M. Eandi, G. Zara, J. Nanosci. Nanotechnol. 6(9–10), 3062 (2006)CrossRefGoogle Scholar
  47. 47.
    N. Rao, V. Gopal, Biosci. Rep. 26(4), 301 (2006)CrossRefGoogle Scholar
  48. 48.
    U. Huth, R. Schubert, R. Peschka-Süss, J. Control. Release 110(3), 490 (2006)CrossRefGoogle Scholar
  49. 49.
    J. Wadia, R. Stan, S. Dowdy, Nat. Med. 10(3), 310 (2004)CrossRefGoogle Scholar
  50. 50.
    C. Matthäus, A. Kale, T. Chernenko, V. Torchilin, M. Diem, Mol. Pharm. 5(2), 287 (2008)CrossRefGoogle Scholar
  51. 51.
    J. Kristl, B. Volk, P. Ahlin, K. Gombac, M. Sentjurc, Int. J. Pharm. 256, 133 (2003)CrossRefGoogle Scholar
  52. 52.
    J. Wojewodzka, G. Pazdzior, M. Langner, Chem. Phys. Lipids 135(2), 181 (2005)CrossRefGoogle Scholar
  53. 53.
    C. Palmerini, C. Cametti, S. Sennato, D. Gaudino, E. Carlini, F. Bordi, G. Arienti, J. Membr. Biol. 211, 185 (2006)CrossRefGoogle Scholar
  54. 54.
    E. Kang, J. Robinson, K. Park, J. Cheng, J. Control. Release 122(3), 261 (2007)CrossRefGoogle Scholar
  55. 55.
    A. Belu, C. Mahoney, K. Wormuth, J. Control. Release 126(2), 111 (2008)CrossRefGoogle Scholar
  56. 56.
    D. Edwards, J. Hanes, G. Caponetti, J. Hrkach, A. Ben-Jebria, M. Eskew, J. Mintzes, D. Deaver, N. Lotan, R. Langer, Science 276(5320), 1868 (1997)CrossRefGoogle Scholar
  57. 57.
    L. Siskind, J. Bioenerg. Biomembr. 37(3), 143 (2005)CrossRefGoogle Scholar
  58. 58.
    A. Struckhoff, R. Bittman, M. Burow, S. Clejan, S. Elliott, T. Hammond, Y. Tang, B. Beckman, J. Pharmacol. Exp. Ther. 309(2), 523 (2004)CrossRefGoogle Scholar
  59. 59.
    E. Gulbins, H. Grassmé, Biochim. Biophys. Acta 1585(2–3), 139 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christian Matthäus
    • 1
    Email author
  • Tatyana Chernenko
    • 1
  • Luis Quintero
    • 2
  • Miloš Miljković
    • 1
  • Lara Milane
    • 3
  • Amit Kale
    • 3
  • Mansoor Amiji
    • 3
  • Vladimir Torchilin
    • 3
  • Max Diem
    • 1
  1. 1.Department of Chemistry and Chemical BiologyNortheastern UniversityBostonUSA
  2. 2.College of Engineering, University of Puerto RicoMayagüesUSA
  3. 3.Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and NanomedicineNortheastern UniversityBostonUSA

Personalised recommendations