Advertisement

Nano-spectroscopy of Individual Carbon Nanotubes and Isolated Graphene Sheets

  • Alain JungenEmail author
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 158)

Abstract

The following chapter will review the resonant Raman-active modes of single-walled carbon nanotubes emphasizing the diameter dependence of the radial breathing mode and selectivity of the optical transition energies (resonance). Thermal studies of individual freestanding single-walled carbon nanotubes showed a pronounced phonon softening. The second part of the chapter is devoted to Raman imaging of graphene. This particular type of carbon nanophase has become available only recently. The first Raman signatures of few-layer to single-layer graphene flakes could be obtained and compared with scanning probe microscopy. The effect of electrical charging (doping) on the Raman features is also demonstrated.

Keywords

Carbon Nanotubes Graphene Sheet Highly Orient Pyrolytic Graphite Raman Intensity Radial Breathing Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Bernal, Proc. R. Soc. A 106, 749 (1924)CrossRefADSGoogle Scholar
  2. 2.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)CrossRefADSGoogle Scholar
  3. 3.
    P. Avouris, Z. Chen, V. Perebeinos, Nature Nanotechnol. 2, 605 (2007)CrossRefADSGoogle Scholar
  4. 4.
    S. Reich, C. Thomsen, J. Maultsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Weinheim, 2004)Google Scholar
  5. 5.
    M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer, Berlin, 2001)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    R.A. Jishi, L. Venkattaraman, M.S. Dresselhaus, G. Dresselhaus, Chem. Phys. Lett. 209, 77 (1993)CrossRefADSGoogle Scholar
  8. 8.
    S. Bandow, S. Asaka, Y. Saito, A.M. Rao, L. Grigorian, E. Richter, P.C. Eklund, Phys. Rev. Lett. 80, 3779 (1998)CrossRefADSGoogle Scholar
  9. 9.
    J. Kuerti, G. Kresse, H. Kuzmany, Phys. Rev. B 85, 8869 (1998)CrossRefADSGoogle Scholar
  10. 10.
    V.N. Popov, V.E.V. Doren, M. Balkanski, Phys. Rev. B 59, 8355 (1999)CrossRefADSGoogle Scholar
  11. 11.
    L. Henrard, E. Hernandez, P. Bernier, A. Rubio, Phys. Rev. B 60, 8521 (1999)CrossRefADSGoogle Scholar
  12. 12.
    V.N. Popov, L. Henrard, P. Lambin, Phys. Rev. B 72(3), 035436 (2005)CrossRefADSGoogle Scholar
  13. 13.
    C. Thomsen, S. Reich, Phys. Rev. Lett. 85, 5214 (2000)CrossRefADSGoogle Scholar
  14. 14.
    O. Dubay, G. Kresse, Phys. Rev. B 67, 035401 (2003)CrossRefADSGoogle Scholar
  15. 15.
    B. Vigolo, A. Péenicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Science 290, 1331 (2001)CrossRefADSGoogle Scholar
  16. 16.
    O. Dubay, G. Kresse, H. Kuzmany, Phys. Rev. Lett. 88, 235506 (2002)CrossRefADSGoogle Scholar
  17. 17.
    H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 103, 2555 (1999)CrossRefGoogle Scholar
  18. 18.
    G.S. Duesberg, I. Loa, M. Burghard, K. Syassen, S. Roth, Phys. Rev. Lett. 85, 5436 (2000)CrossRefADSGoogle Scholar
  19. 19.
    C. Fantini, A. Jorio, M. Souza, M.S. Strano, M.S. Dresselhaus, M.A. Pimenta, Phys. Rev. Lett. 93, 147406 (2004)CrossRefADSGoogle Scholar
  20. 20.
    A. Jorio, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. Lett. 86, 1118 (2001)CrossRefADSGoogle Scholar
  21. 21.
    A. Jungen, C. Stampfer, J. Hoetzel, V. Bright, C. Hierold, Sens. Actuators A Phys. 130–131, 588 (2006)CrossRefGoogle Scholar
  22. 22.
    J. Kong, H.T. Soh, A.M. Cassell, .F. Quate, H.J. Dai, Nature 395, 878 (1998)CrossRefADSGoogle Scholar
  23. 23.
    A. Jungen, V.N. Popov, C. Stampfer, L. Durrer, S. Stoll, C. Hierold, Phys. Rev. B 75, 041405 (2007)CrossRefADSGoogle Scholar
  24. 24.
    V.N. Popov, L. Henrard, P. Lambin, Phys. Rev. B 70(11), 115407 (2004)CrossRefADSGoogle Scholar
  25. 25.
    A. Jungen, S. Hofmann, J.C. Meyer, C. Stampfer, S. Roth, J. Robertson, C. Hierold, J. Micromech. Microeng. 17, 603 (2007)CrossRefGoogle Scholar
  26. 26.
    P. Avouris, J. Appenzeller, R. Martel, S.J. Wind, Proc. IEEE 91, 1772 (2003)CrossRefGoogle Scholar
  27. 27.
    A.P. Graham, G.S. Duesberg, R.V. Seidel, M. Liebau, E. Unger, W. Pamler, F. Kreupl, W. Hoenlein, Small 1, 382 (2005)CrossRefGoogle Scholar
  28. 28.
    C. Stampfer, T. Helbling, D. Obergfell, B. Schoeberle, M.K. Tripp, A. Jungen, S. Roth, V.M. Bright, C. Hierold, Nanoletters 6, 233 (2006)ADSGoogle Scholar
  29. 29.
    D. Mann, Y.K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X.R. Wang, L. Zhang, Q. Wang, J. Guo, H.J. Dai, Nature Nanotechnol. 2, 33 (2007)CrossRefADSGoogle Scholar
  30. 30.
    A. Jungen, J. Gauckler, C. Stampfer, L. Durrer, T. Helbling, C. Hierold, in IEEE MEMS 08, Tucson, AZ, USA, 2008, p. 733Google Scholar
  31. 31.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 61, 2981 (2000)CrossRefADSGoogle Scholar
  32. 32.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)CrossRefADSGoogle Scholar
  33. 33.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Science 438, 197 (2005)Google Scholar
  34. 34.
    Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Science 438, 201 (2005)Google Scholar
  35. 35.
    C. Thomsen, S. Reich, Phys. Rev. Lett. 85, 5214 (2000)CrossRefADSGoogle Scholar
  36. 36.
    R. Vidano, D. Fischbach, L. Willis, T. Loehr, Solid State Commun. 39, 341 (1981)CrossRefADSGoogle Scholar
  37. 37.
    F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)Google Scholar
  38. 38.
    N. Peres, F. Guinea, A.C. Neto, Phys. Rev. B 73, 125411 (2006)CrossRefADSGoogle Scholar
  39. 39.
    E.H. Hwang, S. Adam, S.D. Sarma, Phys. Rev. Lett. 98, 186806 (2007)CrossRefADSGoogle Scholar
  40. 40.
    J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J.H. Smet, K. von Klitzing, A. Yacoby, Nat. Phys. 4, 144 (2008)CrossRefGoogle Scholar
  41. 41.
    C. Stampfer, F. Molitor, D. Graf, K. Ensslin, A. Jungen, C. Hierold, L. Wirtz, Appl. Phys. Lett. 91, 187401 (2007)CrossRefGoogle Scholar
  42. 42.
    S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari, F. Mauri, Nat. Mater. 6, 198 (2007)CrossRefADSGoogle Scholar
  43. 43.
    J. Yan, Y. Zhang, P. Kim, A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007)CrossRefADSGoogle Scholar
  44. 44.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)CrossRefADSGoogle Scholar
  45. 45.
    D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nanoletters 7, 238 (2007)ADSGoogle Scholar
  46. 46.
    A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Nanoletters 6, 2667 (2006)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Micro and Nanosystems, ETH ZurichZurichSwitzerland
  2. 2.Nicronex Consulting Ltd.LuxembourgGermany

Personalised recommendations