Advertisement

Stress Analysis by Means of Raman Microscopy

  • Thomas WermelingerEmail author
  • Ralph Spolenak
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 158)

Abstract

Raman microscopy provides the unique possibility to measure stresses in a fast and uncomplicated way in the sub-micrometer range. The maximal lateral resolution is determined by the laser wavelength. In a Raman spectrum of a deformed or strained material, peak positions are shifted relative to the peak positions of stress-free material. Quantifying these shifts allows the determination of sign and magnitude of internal stresses. Depending on the Raman tensor and therefore on the material’s crystal structure, several components of the stress tensor can be measured. Hence, it is not always possible to analyze complicated stress states just by means of Raman microscopy without making adequate assumptions. For transparent Raman-active materials, 3D stress fields can be measured. This chapter will outline the principles of Raman stress measurements and present case studies on ceramics, semiconductors, and polymers.

Keywords

Residual Stress Phonon Mode Draw Ratio Raman Peak Raman Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Tamura, A. MacDowell, R. Spolenak, B. Valek, J. Bravman, W. Brown, R. Celestre, H. Padmore, B. Batterman, J.R. Patel, J. Synchrotron Radiat. 10, 137 (2003)CrossRefGoogle Scholar
  2. 2.
    J. Nucci, S. Kramer, E. Arzt, C. Volkert, J. Mater. Res. 20, 1851 (2005)CrossRefADSGoogle Scholar
  3. 3.
    J. Bauch, J. Brechbühl, H. Ullrich, G. Meinl, H. Lin, W. Kebede, Cryst. Res. Technol. 34(1), 71 (1999)CrossRefGoogle Scholar
  4. 4.
    R. Keller, A. Roshko, R. Geiss, K. Bertness, T. Quinn, Microelectron. Eng. 75(1), 96 (2004)CrossRefGoogle Scholar
  5. 5.
    Q. Ma, S. Chiras, D. Clarke, Z. Suo, J. Appl. Phys. 78(3), 1614 (1995)CrossRefADSGoogle Scholar
  6. 6.
    I. Wolf, Semicond. Sci. Technol. 11, 139 (1995)CrossRefGoogle Scholar
  7. 7.
    F. Cerdeira, C. Buchenauer, F. Pollak, M. Cardona, Phys. Rev. B 5(2), 580 (1972)CrossRefADSGoogle Scholar
  8. 8.
    E. Anastassakis, A. Pinczuk, E. Burstein, F. Pollak, M. Cardona, Solid State Commun. 8, 1053 (1993)CrossRefGoogle Scholar
  9. 9.
    G. Abstreiter, Appl. Surf. Sci. 50(1–4), 73 (1991)CrossRefADSGoogle Scholar
  10. 10.
    V. Srikar, A. Swan, M. Unlu, B. Goldberg, S. Spearing, J. Microelectromech. Syst. 12(6), 779 (2003)CrossRefGoogle Scholar
  11. 11.
    S. Ganesan, A. Maradudin, J. Oitmaa, Ann. Phys. 56(2), 556 (1970)CrossRefADSGoogle Scholar
  12. 12.
    R. Loudon, Adv. Phys. 13(52), 423 (1964)CrossRefADSGoogle Scholar
  13. 13.
    S. Narayanan, S. Kalidindi, L. Schadler, J. Appl. Phys. 82(5), 2595 (1997)CrossRefADSGoogle Scholar
  14. 14.
    E. Anastassakis, E. Burstein, J. Phys. Chem. Solids 32(2), 563 (1971)CrossRefADSGoogle Scholar
  15. 15.
    E. Anastassakis, J. Phys. Chem. of Solids 32(2), 313 (1971)CrossRefADSGoogle Scholar
  16. 16.
    I. Dewolf, H. Norstrom, H. Maes, J. Appli. Phys. 74(7), 4490 (1993)CrossRefADSGoogle Scholar
  17. 17.
    E. Bonera, M. Fanciulli, D. Batchelder, J. Appl. Phys. 94(4), 2729 (2003)CrossRefADSGoogle Scholar
  18. 18.
    G. Loechelt, N. Cave, J. Menendez, J. Appl. Phys. 86(11), 6164 (1999)CrossRefADSGoogle Scholar
  19. 19.
    G. Loechelt, N. Cave, J. Menendez, Appl. Phys. Lett. 66(26), 3639 (1995)CrossRefADSGoogle Scholar
  20. 20.
    S. Hu, J. Appl. Phys. 70(6), R53 (1991)CrossRefADSGoogle Scholar
  21. 21.
    E. Bonera, M. Fanciulli, D. Batchelder, Appl. Phys. Lett. 81(18), 3377 (2002)CrossRefADSGoogle Scholar
  22. 22.
    H. Poulsen, S. Nielsen, E. Lauridsen, S. Schmidt, R.M. Suter, U. Lienert, L. Margulies, T. Lorentzen, D. Juul Jensen, J. Appl. Crystallogr. 34, 751 (2001)CrossRefGoogle Scholar
  23. 23.
    R. Nowak, T. Manninen, C. Li, K. Heiskanen, S. Hannula, V. Lindroos, T. Soga, F. Yoshida, JSME Int. J. Ser. A - Solid Mech. Mater. Eng. 46(3), 265 (2003)ADSGoogle Scholar
  24. 24.
    T. Wermelinger, C. Borgia, C. Solenthaler, R. Spolenak, Acta Mater. 55(14), 4657 (2007)CrossRefGoogle Scholar
  25. 25.
    W. Rasband, Image Processing and Analysis, (National Institutes of Health: Bethesda, Maryland, USA, 1997–2007)Google Scholar
  26. 26.
    R. Nowak, T. Sekino, K. Niihara, Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 74(1), 171 (1996)ADSGoogle Scholar
  27. 27.
    T. Damen, S. Porto, B. Tell, Phys. Rev. 142(2), 570 (1966)CrossRefADSGoogle Scholar
  28. 28.
    F. Decremps, J. Pellicer-Porres, A. Saitta, J. Chervin, A. Polian, Phys. Rev. B 65(9), 092101 (2002)CrossRefADSGoogle Scholar
  29. 29.
    D. Mead, G. Wilkinson, J. Raman Spectrosc. 6(3), 123 (1977)CrossRefADSGoogle Scholar
  30. 30.
    F. Manjon, K. Syassen, R. Lauck, High Pres. Res. 22(2), 299 (2002)CrossRefGoogle Scholar
  31. 31.
    K. Tashiro, G. Wu, M. Kobayashi, Polymer 29(10), 1768 (1988)CrossRefGoogle Scholar
  32. 32.
    J. Moonen, W. Roovers, R. Meier, B. Kip, J. Polym. Sci. Part B Polym. Phys. 30(4), 361 (1992)CrossRefADSGoogle Scholar
  33. 33.
    W. Wong, R. Young, J. Mater. Sci. 29(2), 510 (1994)CrossRefADSGoogle Scholar
  34. 34.
    V. Mitra, W. Risen, R. Baughman, J. Chem. Phys. 66(6), 2731 (1977)CrossRefADSGoogle Scholar
  35. 35.
    J. Lefèvre, Ultra-High-Performance Polymer Foils, Phd thesis, ETH Zurich, 2008Google Scholar
  36. 36.
    Y. Ward, R. Young, Polymer 42(18), 857 (2001)CrossRefGoogle Scholar
  37. 37.
    M. Moskovits, Rev. Mod. Phys. 57(3), 783 (1985)CrossRefADSGoogle Scholar
  38. 38.
    S. Nie, S. Emery, Science 275(5303), 1102 (1997)CrossRefGoogle Scholar
  39. 39.
    L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, E. Zschech, J. Appl. Phys. 101(10), 104305 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Laboratory of Nanometallurgy, Department of MaterialsETH ZurichZurichSwitzerland
  2. 2.Zürcher Hochschule für Angewandte Wissenschaften, Life Sciences and Facility ManagementWädenswilSwitzerland

Personalised recommendations