Raman Imaging of Plant Cell Walls

  • Notburga GierlingerEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 158)


To gain a better understanding of plant cell walls, several microscopic and chemical methods have been used for their analysis in recent years. However, a knowledge gap exists about the location, quantity, and structural arrangement of molecules on the micrometer scale within the native cell wall. Advances in confocal Raman microscopy and imaging have tackled this problem in a non-invasive way and provide chemical and structural information in situ with a high spatial resolution (< 0.5 μm).

Examples of high-resolution Raman imaging on wood cells are given, showing that changes in polymer chemistry and orientation can be followed within and between different cell wall layers. In horsetail (Equisetum hyemale [E. Hyemale]) tissue, in addition to the mapping of plant cell wall polymers, the distribution of amorphous silica is investigated. Area scans from a cross-section are included as well as a depth profiling within a silica-rich knob on the outer stem wall.


Cell Wall Plant Cell Wall Amorphous Silica Secondary Cell Wall Primary Cell Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Martin, K. Bhatt, K. Baumann, Curr. Opin. Plant Biol. 4(6), 540 (2001)CrossRefGoogle Scholar
  2. 2.
    A. Boudet, The Plant Cell Wall - Annual Plant Reviews (Blackwell, CRC Press, 2003), chap. Towards an understanding of the supramolecular organization of the lignified wall, pp. 155–178Google Scholar
  3. 3.
    M. Jarvis, M. McCann, Plant Physiol. Biochem. 38(1/2), 1 (2000)CrossRefGoogle Scholar
  4. 4.
    M. O’Neill, W. York, The Plant Cell Wall - Annual Plant Reviews (Blackwell, CRC Press, 2003), chap. The composition and structure of plant primary cell walls, pp. 1–44Google Scholar
  5. 5.
    A. O’Sullivan, Cellulose 4(3), 173 (1997)CrossRefGoogle Scholar
  6. 6.
    R. Atalla, MIE Bioforum (UNI Publisher Co, Japan, 1999), chap. The structure of native celluloses, and the origin of their variabilityGoogle Scholar
  7. 7.
    R. Brown, I. Saxena, Plant Physiol. Biochem. 38(1–2), 57 (2000)CrossRefGoogle Scholar
  8. 8.
    D. Klemm, B. Heublein, H. Fink, A. Bohn, Angew. Chem. Int. Ed. 44(22), 3358 (2005)CrossRefGoogle Scholar
  9. 9.
    R. Atalla, J. Hackney, I. Uhlin, N. Thompson, Int. J. Biol. Macromol. 15(2), 109 (1993)CrossRefGoogle Scholar
  10. 10.
    S. Fry, J. Exp. Bot. 40(1), 1 (1989)CrossRefMathSciNetGoogle Scholar
  11. 11.
    C. Plomion, G. Leprovost, A. Stokes, Plant Physiol. 127, 1513 (2001)CrossRefGoogle Scholar
  12. 12.
    D. Fengel, G. Wegener, Wood: Chemistry, Ultrastructure, Reactions (Walter de Gruyter & Co., Berlin, 1989)Google Scholar
  13. 13.
    J. Barnett, V. Bonham, Biol. Rev. 79(2), 461 (2004)CrossRefGoogle Scholar
  14. 14.
    M. McCann, M. Hammouri, R. Wilson, P. Belton, K. Roberts, Plant Physiol. 100 100, 1940 (1992)CrossRefGoogle Scholar
  15. 15.
    M. McCann, M. Bush, D. Milionia, P. Sadoa, N. Stacey, G. Catchpole, M. Defernez, N. Carpita, H. Hoft, P. Ulvskov, R. Wilson, K. Roberts, Phytochemistry 57, 811 (2001)CrossRefGoogle Scholar
  16. 16.
    M. Kacuráková, P. Capeka, V. Sasinková, N. Wellner, A. Ebringerova, Carbohydr. Polym. 43, 195 (2000)CrossRefGoogle Scholar
  17. 17.
    D. Stewart, Appl. Spectrosc. 50(3), 357 (1996)CrossRefADSGoogle Scholar
  18. 18.
    C. Séné, M. McCann, R. Wilson, R. Crinter, Plant Physiol. 106, 1623 (1994)Google Scholar
  19. 19.
    D. Himmelsbach, S. Khahili, D. Akin, Vib. Spectrosc. 19, 361 (1999)CrossRefGoogle Scholar
  20. 20.
    R. Atalla, U. Agarwal, Science 227, 636 (1985)CrossRefADSGoogle Scholar
  21. 21.
    G. Toole, M. Kacurakova, A. Smith, K. Waldron, R. Wilson, Carbohydr. Res. 339(3), 629 (2004)CrossRefGoogle Scholar
  22. 22.
    V. Morris, S. Ring, A. MacDougall, R. Wilson, The Plant Cell Wall - Annual Plant Reviews (Blackwell, 2003), chap. Biophysical characterisation of plant cell walls, pp. 55–91Google Scholar
  23. 23.
    B. Schrader, A. Hoffmann, A. Simon, J. Sawatzki, Vib. Spectrosc. 1(3), 239 (1991)CrossRefGoogle Scholar
  24. 24.
    M. Baranska, H. Schulz, P. Rösch, M. Strehle, J. Popp, Analyst 129(10), 926 (2004)CrossRefADSGoogle Scholar
  25. 25.
    R. Baranski, M. Baranska, H. Schulz, Planta 222(3), 448 (2005)CrossRefGoogle Scholar
  26. 26.
    M. Baranska, H. Schulz, E. Joubert, M. Manley, Anal. Chem. 78(22), 7716 (2006)CrossRefGoogle Scholar
  27. 27.
    R. Atalla, J. Ranua, E. Malcolm, Tappi J. 67(2), 96 (1984)Google Scholar
  28. 28.
    J. Wiley, R. Atalla, Carbohydr. Res. 160, 113 (1987)CrossRefGoogle Scholar
  29. 29.
    R. Atalla, R. Whitmore, C. Heimbach, Macromolecules 13(6), 1717 (1980)CrossRefADSGoogle Scholar
  30. 30.
    S. Fischer, K. Schenzel, K. Fischer, W. Diepenbrock, Macromol. Symp. 223, 41 (2005)CrossRefGoogle Scholar
  31. 31.
    H. Edwards, D. Farwell, D. Webster, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 53(13), 2383 (1997)CrossRefADSGoogle Scholar
  32. 32.
    A. Jähn, M. Schröder, M. Füting, K. Schenzel, W. Diepenbrock, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 58, 2271 (2002)CrossRefGoogle Scholar
  33. 33.
    P. Peetla, K. Schenzel, W. Diepenbrock, Appl. Spectrosc. 60(6), 682 (2006)CrossRefADSGoogle Scholar
  34. 34.
    W. Morrison, D. Himmelsbach, D. Akin, J. Evans, J. Agric. Food Chem. 51(9), 2565 (2003)CrossRefGoogle Scholar
  35. 35.
    Y. Liu, S. Kokot, T. Sambi, Analyst 123(4), 633 (1998)CrossRefADSGoogle Scholar
  36. 36.
    B. Schrader, H. Klump, K. Schenzel, H. Schulz, J. Mol. Struct. 509, 201 (1999)CrossRefADSGoogle Scholar
  37. 37.
    N. Gierlinger, M. Schwanninger, A. Reinecke, I. Burgert, Biomacromolecules 7(7), 2077 (2006)CrossRefGoogle Scholar
  38. 38.
    S. Eichhorn, J. Sirichaisit, R. Young, J. Mater. Sci. 36, 3129 (2001)CrossRefGoogle Scholar
  39. 39.
    J. Wiley, R. Atalla, Carbohydr. Res. 160, 113 (1987)CrossRefGoogle Scholar
  40. 40.
    H. Edwards, D. Farwell, D. Webster, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 53(13), 2383 (1997)CrossRefADSGoogle Scholar
  41. 41.
    U. Agarwal, Planta 224(5), 1141 (2006)CrossRefGoogle Scholar
  42. 42.
    N. Gierlinger, M. Schwanninger, Plant Physiol. 140(4), 1246 (2006)CrossRefGoogle Scholar
  43. 43.
    T. Röder, G. Koch, H. Sixta, Holzforschung 58, 480 (2004)CrossRefGoogle Scholar
  44. 44.
    U. Agarwal, S. Ralph, Appl. Spectrosc. 51(11), 1648 (1997)CrossRefADSGoogle Scholar
  45. 45.
    J. Barnett, G. Jeronimidis, Wood Quality and Its Biological Basis (Blackwell Scientific, Oxford, 2003), chap. Reaction Wood, p. 226Google Scholar
  46. 46.
    T. Okuyama, H. Yamamoto, M. Yoshida, Y. Hattori, R. Archer, Ann. Sci. For. 51, 291 (1994)CrossRefGoogle Scholar
  47. 47.
    W. Côté, A. Day, Cellular Ultrastructure of Woody Plants (Syracuse University Press: Syracuse, 1965), chap. Anatomy and Ultrastructue of Reaction Wood, pp. 391–418Google Scholar
  48. 48.
    N. Nishikubo, T. Awano, A. Banasiak, V. Bourquin, F. Ibatullin, R. Funada, H. Brumer, T. Teeri, T. Hayashi, B. Sundberg, E. Mellerowicz, Plant Cell Physiol. 48(6), 843 (2007)CrossRefGoogle Scholar
  49. 49.
    H. Yamamoto, M. Yoshida, T. Okuyama, Planta 216(2), 280 (2002)CrossRefGoogle Scholar
  50. 50.
    N. Gierlinger, I. Burgert, N Z J. For. Sci. 36(1), 60 (2006)Google Scholar
  51. 51.
    P. Rösch, H. Schneider, U. Zimmermann, W. Kiefer, J. Popp, Biopolymers 74(1-2), 151 (2004)CrossRefGoogle Scholar
  52. 52.
    D. Dietrich, K. Witke, R. Rossler, , G. Marx, Appl. Surf. Sci. 179(1-4), 230 (2001)CrossRefADSGoogle Scholar
  53. 53.
    K. Witke, J. Gotze, R. Rossler, D. Dietrich, G. Marx, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 60(12), 2903 (2004)CrossRefADSGoogle Scholar
  54. 54.
    J. Nowak, M. Florek, W. Kwiatek, J. Lekki, P. Chevallier, E.Z.N. Mestres, E. Dutkiewicz, A. Kuczumow, Mater. Sci. Eng. C Biomim. Supramol. Syst. 25(2), 119 (2005)CrossRefGoogle Scholar
  55. 55.
    A. Macnish, D. Irving, D. Joyce, V. Vithanage, A. Wearing, R. Webb, R. Frost, Aust. J. Bot. 51, 565 (2003)CrossRefGoogle Scholar
  56. 56.
    L. Prinsloo, W. du Plooy, C. van der Merwe, J. Raman Spectrosc. 35(7), 561 (2004)CrossRefADSGoogle Scholar
  57. 57.
    D. Dietrich, S. Hemeltjen, N. Meyer, E. Baucker, G. Ruhle, O. Wienhaus, G. Marx, Anal. Bioanal. Chem. 374(4), 749 (2002)CrossRefGoogle Scholar
  58. 58.
    D. Dietrich, S. Hinke, W. Baumann, R. Fehlhaber, E. Baucher, G. Ruhle, O. Wienhaus, G. Marx, Anal. Bioanal. Chem. 376(3), 399 (2003)Google Scholar
  59. 59.
    N. Gierlinger, L. Sapei, O. Paris, Planta 227(5), 969 (2008)CrossRefGoogle Scholar
  60. 60.
    L. Sapei, N. Gierlinger, J. Hartmann, R. Nöske, P. Strauch, O. Paris, Anal. Bioanal. Chem. 389, 1249 (2007)CrossRefGoogle Scholar
  61. 61.
    T. Timell, Sven. Papperstidn. 67(9), 356 (1964)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of BiomaterialsMax-Planck-Institute of Colloids and InterfacesPotsdam-GolmGermany
  2. 2.Johannes Kepler University, Institute of Polymer ScienceLinzAustria

Personalised recommendations