Skip to main content

Unsupervised Plan Detection with Factor Graphs

  • Conference paper
Knowledge Discovery from Sensor Data (Sensor-KDD 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5840))

Included in the following conference series:

  • 981 Accesses

Abstract

Recognizing plans of moving agents is a natural goal for many sensor systems, with applications including robotic pathfinding, traffic control, and detection of anomalous behavior. This paper considers plan recognition complicated by the absence of contextual information such as labeled plans and relevant locations. Instead, we introduce 2 unsupervised methods to simultaneously estimate model parameters and hidden values within a Factor graph representing agent transitions over time. We evaluate our approach by applying it to goal prediction in a GPS dataset tracking 1074 ships over 5 days in the English channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Google earth, http://earth.google.com/

  2. Ashbrook, D., Starner, T.: Using gps to learn significant locations and predict movement across multiple users. Personal Ubiquitous Comput. 7(5), 275–286 (2003)

    Article  Google Scholar 

  3. Beal, M.J., Ghahramani, Z., Rasmussen, C.E.: The infinite hidden Markov model. In: Advances in Neural Information Processing Systems, vol. 14. MIT Press, Cambridge (2002)

    Google Scholar 

  4. Carley, K.M.: Dynamic network analysis. In: Committee on Human Factors, pp. 133–145. National Research Council (2004)

    Google Scholar 

  5. Duong, T.V., Bui, H.H., Phung, D.Q., Venkatesh, S.: Activity recognition and abnormality detection with the switching hidden semi-markov model. In: CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), Washington, DC, USA, vol. 1, pp. 838–845. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  6. Elidan, G., McGraw, I., Koller, D.: Residual belief propagation: Informed scheduling for asynchronous message passing. In: Proceedings of the Twenty-second Conference on Uncertainty in AI (UAI), Boston, Massachussetts (July 2006)

    Google Scholar 

  7. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning, 1st edn. The MIT Press, Boston (2007)

    MATH  Google Scholar 

  8. Haider, S., Levis, A.H.: Modeling time-varying uncertain situations using dynamic influence nets. International Journal of Approximate Reasoning 49(2), 488–502 (2009)

    Article  Google Scholar 

  9. Koller, D., Friedman, N., Getoor, L., Taskar, B.: Graphical models in a nutshell. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    Google Scholar 

  10. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: International Joint Conference on Artificial Intelligence (ICML), Williamstown, MA (2001)

    Google Scholar 

  11. Liao, L., Fox, D., Kautz, H.: Extracting places and activities from gps traces using hierarchical conditional random fields. Int. J. Rob. Res. 26(1), 119–134 (2007)

    Article  Google Scholar 

  12. Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Learning and inferring transportation routines. Artif. Intell. 171(5-6), 311–331 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Murphy, K.: Dynamic Bayesian Networks. PhD thesis, UC Berkeley, Berkeley, CA (2002)

    Google Scholar 

  14. Nguyen, N., Bui, H., Venkatesh, S., West, G.: Recognizing and monitoring high level behaviours in complex spatial environments. In: CVPR Conference Proceedings, IEEE International Conference on Computer Vision and Pattern Recognition, CVPR (2003)

    Google Scholar 

  15. Nguyen, N., Phung, D., Venkatesh, S., Bui, H.: Learning and detecting activities from movement trajectories using the hierarchical hidden markov model. In: IEEE International Conference on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  16. Teh, Y., Jordan, M., Beal, M., Blei, D.: Hierarchical dirichlet processes. Journal of the American Statistical Association 101(476), 1566–1581 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yedida, J., Freeman, W., Weiss, Y.: Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Transactions on Information Theory 51(7), 2282–2312 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Davis, G.B., Olson, J., Carley, K.M. (2010). Unsupervised Plan Detection with Factor Graphs. In: Gaber, M.M., Vatsavai, R.R., Omitaomu, O.A., Gama, J., Chawla, N.V., Ganguly, A.R. (eds) Knowledge Discovery from Sensor Data. Sensor-KDD 2008. Lecture Notes in Computer Science, vol 5840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12519-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12519-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12518-8

  • Online ISBN: 978-3-642-12519-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics