Skip to main content

Part of the book series: NanoScience and Technology ((NANO,volume 0))

  • 1139 Accesses

Abstract

We theoretically investigate the optical properties of different semiconductor systems containing two dimensional lattices of neutral and charged quantum dots embedded in planar and arrays of optical cavities. The strong exciton (trion)- photon coupling is described in terms of polariton quasiparticles. First, we focus on a lattice of neutral dots in a planar microcavity. We show that Bragg polariton modes can be obtained by tuning the exciton and the cavity modes into resonance at high symmetry points of the Brillouin zone. The effective mass of these polaritons can be extremely small and makes of them the lightest exciton-like quasiparticles in solids. We analyze how disorder affects the properties of these Bragg polariton modes. It is found that in some cases weak disorder increases the light matter coupling and it leads to a larger polariton splitting. The second system investigated is similar to the first, but each dot has been charged with one electron. The electron spin determines the polarization of the cavity photon that couples to the dot. Such spin lattice can be used for quantum information processing and we show that a conditional phase shift gate with high fidelity can be obtained. Finally, we investigate exciton-photon quantum phase transitions in a planar lattice of one-mode cavities containing one neutral quantum dot each. Adopting the mean-field approximation we calculate exciton- and photon-phase diagrams and demonstrate that by controlling exciton- and photon-hopping energies a very rich scenario of coupled fermionic-bosonic quantum phase transitions appears.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Deng, G. Weihs, D. Snoke, J. Bloch, Y. Yamamoto, PNAS 100, 15318 (2003)

    Article  ADS  Google Scholar 

  2. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature (London) 443(7110), 409 (2006)

    Article  ADS  Google Scholar 

  3. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Science 316(5827), 1007 (2007)

    Article  ADS  Google Scholar 

  4. J. Keeling, F.M. Marchetti, M.H. Szymanska, P.B. Littlewood, Semic. Sci. Tech. 22, R1 (2007)

    Article  ADS  Google Scholar 

  5. E.M. Kessler, M. Grochol, C. Piermarocchi, Phys. Rev. B 77, 085306 (2008)

    Article  ADS  Google Scholar 

  6. A.V. Mintsev, L.V. Butov, C. Ell, S. Mosor, G. Khitrova, H.M. Gibbs, JETP Lett. 76, 637 (2002)

    Article  ADS  Google Scholar 

  7. G.R. Hayes, J.L. Staehli, U. Oesterle, B. Deveaud, R.T. Phillips, C. Ciuti, Phys. Rev. Lett. 83, 2837 (1999)

    Article  ADS  Google Scholar 

  8. E.L. Ivchenko, Y. Fu, M. Willander, Phys. Solid State 42, 1756 (2000)

    Article  ADS  Google Scholar 

  9. Y.D. Chong, D.E. Pritchard, M. Soljačić, Phys. Rev. B 75, 235124 (2007)

    Article  ADS  Google Scholar 

  10. K. Kempa, R. Ruppin, J.B. Pendry, Phys. Rev. B 72, 205103 (2005)

    Article  ADS  Google Scholar 

  11. D. Gerace, L.C. Andreani, Phys. Rev. B 75, 235325 (2007)

    Article  ADS  Google Scholar 

  12. R.I. Kaitouni, O.E. Daïf, A. Baas, M. Richard, T. Paraiso, T.G. P. Lugan, F. Morier-Genoud, J.D. Ganiére, J.L. Staehli, V. Savona, B. Deveaud, Phys. Rev. B 74, 155311 (2006)

    Article  ADS  Google Scholar 

  13. G.F. Quinteiro, J. Fernández-Rossier, C. Piermarocchi, Phys. Rev. Lett. 97, 097401 (2006)

    Article  ADS  Google Scholar 

  14. G. Tarel, G. Parascandolo, V. Savona, Phys. Stat. Sol. (B) 245, 1085 (2008)

    Article  ADS  Google Scholar 

  15. S. Kiravittaya, A. Rastelli, O.G. Schmidt, Reports on Progress in Physics 72, 046502 (2009)

    Article  ADS  Google Scholar 

  16. S. Sachdev, Quantum Phase Transitions (Cambdrige University Press, Cambridge, UK, 1999)

    Google Scholar 

  17. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, UK, 1995)

    Google Scholar 

  18. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature (London) 415, 39 (2002)

    Article  ADS  Google Scholar 

  19. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)

    Article  ADS  Google Scholar 

  20. A.D. Greentree, C. Tahan, J.H. Cole, L.C.L. Hollenberg, Nature Physics 2, 856 (2006)

    Article  ADS  Google Scholar 

  21. V. Savona, C. Piermarocchi, A. Quattropani, P. Schwendimann, F. Tassone, Phase Transitions 68, 169 (1999)

    Article  Google Scholar 

  22. M. Grochol, C. Piermarocchi, Phys. Rev. B 78, 035323 (2008)

    Article  ADS  Google Scholar 

  23. R.K. Bullough, V.B. Thompson, J. of Phys. C 3, 1780 (1970)

    Article  ADS  Google Scholar 

  24. J. Knoester, S. Mukamel, J. Chem. Phys 91, 989 (1989)

    Article  ADS  Google Scholar 

  25. J.J. Hopfield, Phys. Rev. 112, 1555 (1958)

    Article  MATH  ADS  Google Scholar 

  26. G.D. Mahan, Many-particle physics (Kluwer Academic/Plenum Publishers, New York, 2000)

    Google Scholar 

  27. M. Grochol, C. Piermarocchi, Phys. Rev. B 78, 165324 (2008)

    Article  ADS  Google Scholar 

  28. J.W. Robinson, J.H. Rice, K.H. Lee, J.H. Na, R.A. Taylor, D.G. Hasko, R.A. Oliver, M.J. Kappers, C.J. Humphreys, G.A.D. Briggs, Appl. Phys. Lett. 86, 213103 (2005)

    Article  ADS  Google Scholar 

  29. T. Pellizzari, S.A. Gardiner, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 75, 3788 (1995)

    Article  ADS  Google Scholar 

  30. C. Piermarocchi, G.F. Quinteiro, Phys. Rev. B 70, 235210 (2004)

    Article  ADS  Google Scholar 

  31. M. Tinkham, Group theory and quantum mechanics (Dover publications, Mineola, New York, 2003)

    Google Scholar 

  32. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions (Wiley-VCH, Weinheim, 2004)

    Google Scholar 

  33. A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, H. Weinfurter, Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  34. Y. Wu, E.D. Kim, X. Xu, J. Cheng, D.G. Steel, A.S. Bracker, D. Gammon, S.E. Economou, L.J. Sham, Phys. Rev. Lett. 99, 097402 (2007)

    Article  ADS  Google Scholar 

  35. J. Berezovsky, M.H. Mikkelsen, N.G. Stoltz, L.A. Coldren, D.D. Awschalom, Science 320, 349 (2008)

    Article  ADS  Google Scholar 

  36. J.F. Poyatos, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 78, 390 (1997)

    Article  ADS  Google Scholar 

  37. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 1997)

    Google Scholar 

  38. M. Grochol, Phys. Rev. B 79, 205306 (2009)

    Article  ADS  Google Scholar 

  39. A.O. Govorov, Phys. Rev. B 71, 155323 (2005)

    Article  ADS  Google Scholar 

  40. G. Parascandolo, V. Savona, Phys. Rev. B 71, 045335 (2005)

    Article  ADS  Google Scholar 

  41. A.D. Greentree, J. Salzman, S. Prawer, L.C.L. Hollenberg, Phys. Rev. A 73, 013818 (2006)

    Article  ADS  Google Scholar 

  42. S. Ben-Tabou de Leon, B. Laikhtman, Phys. Rev. B 63, 125306 (2001)

    Article  ADS  Google Scholar 

  43. S. Ben-Tabou de Leon, B. Laikhtman, Phys. Rev. B 67, 235315 (2003)

    Article  ADS  Google Scholar 

  44. C. Schindler, R. Zimmermann, Phys. Rev. B 78, 045313 (2008)

    Article  ADS  Google Scholar 

  45. M. Grochol, R. Zimmermann, Phys. Rev. B 76, 195326 (2007)

    Article  ADS  Google Scholar 

  46. W. Krauth, N. Trivedi, D. Ceperley, Phys. Rev. Lett. 67, 2307 (1991)

    Article  ADS  Google Scholar 

  47. D. van Oosten, P. van der Straten, H.T.C. Stoof, Phys. Rev. A 63, 053601 (2001)

    Article  ADS  Google Scholar 

  48. M. Grochol, F. Grosse, R. Zimmermann, Phys. Rev. B 71, 125339 (2005)

    Article  ADS  Google Scholar 

  49. V.M. Agranovich, Y.N. Gartstein, Physics-Uspekhi 49, 1029 (2006)

    Article  ADS  Google Scholar 

  50. M. Grochol, F. Grosse, R. Zimmermann, Phys. Rev. B 74, 115416 (2006)

    Article  ADS  Google Scholar 

  51. L.O. Mereni, V. Dimastrodonato, R.J. Young, E. Pelucchi, Appl. Phys. Lett. 94, 223121 (2009)

    Article  ADS  Google Scholar 

  52. D.M. Whittaker, Phys. Rev. Lett. 80, 4791 (1998)

    Article  ADS  Google Scholar 

  53. M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)

    Article  ADS  Google Scholar 

  54. J. Keeling, F.M. Marchetti, M.H. Szymańska, P.B. Littlewood, Semicond. Sci. Technol. 22, R1 (2007)

    Article  ADS  Google Scholar 

  55. F.M. Marchetti, M.H. Szymańska, J.M.J. Keeling, J. Kasprzak, R. André, P.B. Littlewood, L.S. Dang, Phys. Rev. B 77, 235313 (2008)

    Article  ADS  Google Scholar 

  56. S. Utsunomiya, L. Tian, G. Roumpos, C.W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Nature Physics 4, 700 (2008)

    Article  Google Scholar 

  57. K.G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L.S. Dang, B. Deveaud-Plédran, Nature Physics 4, 706 (2008)

    Article  ADS  Google Scholar 

  58. P. Eastham, P. Littlewood, Solid State Comm. 116, 357 (2000)

    Article  ADS  Google Scholar 

  59. P. Littlewood, P.R. Eastham, J.M.J. Keeling, F.M. Marchetti, B.D. Simons, M.H. Szymanska, J. Phys. Condens. Matter 16, 3597 (2004)

    Article  ADS  Google Scholar 

  60. F.M. Marchetti, B.D. Simons, P.B. Littlewood, Phys. Rev. B 70, 155327 (2004)

    Article  ADS  Google Scholar 

  61. S. Christopoulos, G.B.H. von Högersthal, A.J.D. Grundy, P.G. Lagoudakis, A.V. Kavokin, J.J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.F. Carlin, N. Grandjean, Phys. Rev. Lett. 98, 126405 (2007)

    Article  ADS  Google Scholar 

  62. D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, J. Bloch, Phys. Rev. Lett. 100, 047401 (2008)

    Article  ADS  Google Scholar 

  63. D. Snoke, Nature Physics 4, 674 (2008)

    Article  ADS  Google Scholar 

  64. L.V. Butov, Nature (London) 447, 540 (2007)

    Article  ADS  Google Scholar 

  65. L.V. Butov, Solid State Comm. 127, 89 (2003)

    Article  ADS  Google Scholar 

  66. D.W. Snoke, Y. Liu, Z. Voros, L. Pfeiffer, K. West, Solid State Comm. 134, 37 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Grochol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grochol, M., Kessler, E.M., Piermarocchi, C. (2010). Exciton and spin coherence in quantum dot lattices. In: Slavcheva, G., Roussignol, P. (eds) Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures. NanoScience and Technology, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12491-4_9

Download citation

Publish with us

Policies and ethics