Skip to main content

Part of the book series: NanoScience and Technology ((NANO,volume 0))

Abstract

This Chapter reviews experimental and theoretical studies of electron spin coherence in singly-charged (In,Ga)As quantum dots. Ultrafast optical technique, the pump-probe Faraday rotation, is used for generation and control of the spin coherence. Despite the ensemble inhomogeneity the electron spin coherence time T2 is measured in the mode-locking regime of synchronization of the electron spin precession about external magnetic field with the periodic laser excitation. This synchronization effect is enhanced and stabilized by electron-nuclear hyperfine interaction allowing frequency focusing of the inhomogeneous electron ensemble into the single precession mode. Ultrafast optical spin rotation of resident electrons in quantum dots to any point on the Bloch sphere is demonstrated and all-optical spin echo for these electrons is realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. P. DiVincenzo, Science 270, 5234 (1995).

    Article  MathSciNet  Google Scholar 

  2. A. Abragam, The Principles of Nuclear Magnetism, (Oxford Science Publications, 1961).

    Google Scholar 

  3. J. J. Baumberg, D. D. Awschalom, and N. Samarth, J. Appl. Phys. 75, 6199 (1994).

    Article  ADS  Google Scholar 

  4. N. I. Zheludev, M. A. Brummell, A. Malinowski, S. V. Popov, and R. T. Harley, Solid State Commun. 89, 823 (1994).

    Article  ADS  Google Scholar 

  5. D. R. Yakovlev and M. Bayer, in Spin Physics in Semiconductors, Ed. M. I. Dyakonov (Springer-Verlag, Berlin, 2008), Ch.6, p.135.

    Google Scholar 

  6. A. Greilich, R. Oulton, E. A. Zhukov, I. A. Yugova, D. R. Yakovlev, M. Bayer, A. Shabaev, Al. L. Efros, I. A. Merkulov, V. Stavarache, D. Reuter, and A. Wieck, Phys. Rev. Lett. 96, 227401 (2006).

    Article  ADS  Google Scholar 

  7. I. A. Yugova, A. Greilich, E. A. Zhukov, D. R. Yakovlev, M. Bayer, D. Reuter, and A. D. Wieck, Phys. Rev. B 75, 195325 (2007).

    Article  ADS  Google Scholar 

  8. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schafer, Phys. Rev. B 65, 195315 (2002); and references therein.

    Article  ADS  Google Scholar 

  9. E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures, Springer Series in Solid-State Sciences Vol. 110 (Springer, Berlin, 1997).

    Google Scholar 

  10. E. L. Ivchenko, Optical spectroscopy of semiconductor nanostructures, (Alpha Science, Harrow UK, 2005).

    Google Scholar 

  11. M. Bayer, O. Stern, A. Kuther, and A. Forchel, Phys. Rev. B 61, 7273 (2000).

    Article  ADS  Google Scholar 

  12. R. E. Worsley, N. J. Traynor, T. Grevatt, and R. T. Harley, Phys. Rev. Lett. 76, 3224 (1996).

    Article  ADS  Google Scholar 

  13. X. Marie, T. Amand, P. Le Jeune, M. Paillard, P. Renucci, L. E. Golub, V. D. Dymnikov, and E. L. Ivchenko, Phys. Rev. B 60, 5811 (1999).

    Article  ADS  Google Scholar 

  14. E. L. Ivchenko and A. A. Kiselev, Fiz. Tekh. Poluprovodn. 26, 1471 (1992) [Sov. Phys. Semicond. 26, 827 (1992)].

    Google Scholar 

  15. M. Bayer, A. Kuther, A. Forchel, A. Gorbunov, V. B. Timofeev, F. Schäfer, J. P. Reithmaier, T. L. Reinecke, and S. N. Walck, Phys. Rev. Lett. 82, 1748 (1999).

    Article  ADS  Google Scholar 

  16. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, (Springer, Berlin, 1996).

    MATH  Google Scholar 

  17. I. A. Yugova, A. Greilich, D. R. Yakovlev, A. A. Kiselev, M. Bayer, V. V. Petrov, Yu. K. Dolgikh, D. Reuter, and A. D. Wieck, Phys. Rev. B 75, 245302 (2007).

    Article  ADS  Google Scholar 

  18. D. Paget, G. Lampel B. Sapoval, and V. I. Safarov, Phys. Rev. B 15, 5780 (1977).

    Article  ADS  Google Scholar 

  19. W. Sheng, S. J. Xu, and P. Hawrylak, Phys. Rev. B. 77, 241307(R) (2008).

    ADS  Google Scholar 

  20. T. H. Stievater, X. Li, D. G. Steel, D. S. Katzer, D. Park, C. Piermarocchi, and L. Sham, Phys. Rev. Lett. 87, 133603 (2001).

    Article  ADS  Google Scholar 

  21. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, Nature 418, 612 (2002).

    Article  ADS  Google Scholar 

  22. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, Phys. Rev. B 66, 081306(R) (2002).

    Article  ADS  Google Scholar 

  23. A. Shabaev, Al. L. Efros, D. Gammon, and I. A. Merkulov, Phys. Rev. B 68, 201305(R) (2003).

    Article  ADS  Google Scholar 

  24. I. A. Merkulov, Al. L. Efros, and M. Rosen, Phys. Rev. B 65, 205309 (2002).

    Article  ADS  Google Scholar 

  25. A. V. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. Lett. 88, 186802 (2002).

    Article  ADS  Google Scholar 

  26. J. M. Elzerman, R. Hanson, L. H. Willems Van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, Nature 430, 431 (2004).

    Article  ADS  Google Scholar 

  27. M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, Nature 432, 81 (2004).

    Article  ADS  Google Scholar 

  28. D. V. Bulaev and D. Loss, Phys. Rev. Lett. 95, 076805 (2005).

    Article  ADS  Google Scholar 

  29. T. Flissikowski, I. A. Akimov, A. Hundt, and F. Henneberger, Phys. Rev. B 68, 161309(R) (2003).

    Article  ADS  Google Scholar 

  30. S. E. Economou, Ren-Bao Liu, L. J. Sham, and D. G. Steel, Phys. Rev. B 71, 195327 (2005).

    Article  ADS  Google Scholar 

  31. A. Greilich, D. R. Yakovlev, A. Shabaev, Al. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, Science 313, 341 (2006).

    Article  ADS  Google Scholar 

  32. D. D. Awschalom and N. Samarth, in: Semiconductor Spintronics and Quantum Computation, Eds. D. D. Awschalom, D. Loss and N. Samarth (Springer-Verlag, Berlin 2002), pp. 147–193.

    Google Scholar 

  33. T. A. Kennedy, A. Shabaev, M. Scheibner, Al. L. Efros, A. S. Bracker, and D. Gammon, Phys. Rev. B 73, 045307 (2006).

    Article  ADS  Google Scholar 

  34. A. Greilich, M. Wiemann, F. G. G. Hernandez, D. R. Yakovlev, I. A. Yugova, M. Bayer, A. Shabaev, Al. L. Efros, D. Reuter, and A. D. Wieck, Phys. Rev. B 75, 233301 (2007).

    Article  ADS  Google Scholar 

  35. F. G. G. Hernandez, A. Greilich, F. Brito, M. Wiemann, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, Phys. Rev. B 78, 041303(R) (2008).

    Article  ADS  Google Scholar 

  36. W. A. Coish, and D. Loss, Phys. Rev. B 70, 195340 (2004).

    Article  ADS  Google Scholar 

  37. A. Greilich, A. Shabaev, D. R. Yakovlev, Al. L. Efros, I. A. Yugova, D. Reuter, A. D. Wieck, and M. Bayer, Science 317, 1896 (2007).

    Article  ADS  Google Scholar 

  38. V. L. Berkovits, A. I. Ekimov, and V. I. Safarov, Sov. Phys. - JETP 38, 169 (1974).

    ADS  Google Scholar 

  39. D. Paget, Phys. Rev. B 25, 4444 (1982).

    Article  ADS  Google Scholar 

  40. M. I. Dyakonov and V. I. Perel, in: Optical orientation, Eds. F. Meier and B. P. Zakharchenja (North-Holland, Amsterdam 1984).

    Google Scholar 

  41. A. Khaetskii and Yu. V. Nazarov, Phys. Rev. B 61, 12639 (2000).

    Article  ADS  Google Scholar 

  42. M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, Nature 432, 81 (2004).

    Article  ADS  Google Scholar 

  43. S. G. Carter, A. Shabaev, Sophia, E. Economou, T. A. Kennedy, A. S. Bracker, and T. L. Reinecke, Phys. Rev. Lett. 102, 167403 (2009)

    Article  ADS  Google Scholar 

  44. A. Greilich, S. Spatzek, I. A. Yugova, I. A. Akimov, D. R. Yakovlev, Al. L. Efros, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, Phys. Rev. B 79, 201305(R) (2009).

    Article  ADS  Google Scholar 

  45. M. Yu. Petrov, I. V. Ignatiev, S. V. Poltavtsev, A. Greilich, A. Bauschulte, D. R. Yakovlev, and M. Bayer, Phys. Rev. B 78, 045315 (2008).

    Article  ADS  Google Scholar 

  46. G. Burkard, H. A. Engel, and D. Loss, Progress of Physics 48, 965 (2000).

    Google Scholar 

  47. C. E. Pryor, and M. E. Flatté, Appl. Phys. Lett. 88, 233108 (2006).

    Article  ADS  Google Scholar 

  48. F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. P. Kouwenhoven and L. M. K. Vandersypen, Nature 442, 766 (2006).

    Article  ADS  Google Scholar 

  49. Y. Wu, E. D. Kim, Xiaodong Xu, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon S. E. Economou, and L. J. Sham, Phys. Rev. Lett. 99, 097402 (2007).

    Article  ADS  Google Scholar 

  50. J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Science 320, 349 (2008).

    Article  ADS  Google Scholar 

  51. D. Press, T. D. Ladd, B. Zhang and Y. Yamamoto, Nature 456, 218 (2008).

    Article  ADS  Google Scholar 

  52. A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, Nature Physics 5, 262 (2009).

    Article  ADS  Google Scholar 

  53. S. E. Economou and T. L. Reinecke, Phys. Rev. Lett. 99, 217401 (2007).

    Article  ADS  Google Scholar 

  54. S. E. Economou, L. J. Sham, Y. Wu, and D. G. Steel, Phys. Rev. B 74, 205415 (2006).

    Article  ADS  Google Scholar 

  55. F. Hahn, Phys. Rev. 80, 580 (1950).

    Article  MATH  ADS  Google Scholar 

  56. F. H. L. Koppens, K. C. Nowack, and L. M. K. Vandersypen, Phys. Rev. Lett. 100, 236802 (2008).

    Article  ADS  Google Scholar 

  57. L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  58. W. Yao, R.-B. Liu, and L. J. Sham, Phys. Rev. Lett. 98, 077602 (2007).

    Article  ADS  Google Scholar 

  59. W. M. Witzel, and S. Das Sarma, Phys. Rev. Lett. 98, 077601 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Greilich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greilich, A., Yakovlev, D.R., Bayer, M. (2010). Ensemble spin coherence of singly charged InGaAs quantum dots. In: Slavcheva, G., Roussignol, P. (eds) Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures. NanoScience and Technology, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12491-4_6

Download citation

Publish with us

Policies and ethics