Skip to main content

Part of the book series: NanoScience and Technology ((NANO,volume 0))

Abstract

The spin of an electron trapped in a quantum dot is currently of interest both because it constitutes a prototype quantum mechanical system in a controllable solid state environment and due to its relevance in quantum information processing. For such applications, a high level control of the spin is necessary, and various techniques from time dependent magnetic and electric fields to lasers are used. Here we develop the basic ideas involving the quantum dot electron spin for quantum information applications and review optical methods of its control. Particular emphasis is given on the use of hyperbolic secant optical pulses. Relevant experimental results are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K.R. Brown, A. W. Harrow, I.L. Chuang, Phys. Rev. A 70052318 (2004)

    Google Scholar 

  2. D. Loss and D. P. Di Vincenzo, Phys. Rev. A, 57, 120 (1998)

    Article  ADS  Google Scholar 

  3. A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, A. Small, Phys. Rev. Lett. 83, 4204 (1999)

    Article  ADS  Google Scholar 

  4. A. Greilich, D. R. Yakovlev, A. Shabaev, Al. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D.Reuter, A.Wieck, and M. Bayer, Science 313, 341 (2006)

    Article  ADS  Google Scholar 

  5. D. P. Di Vincenzo, Fortschr. Der Physik 48, 771 (2000)

    Article  ADS  Google Scholar 

  6. I. L. Chuang and M. A. Nielsen, J. Mod. Opt. 44, 732–744 (1997)

    Google Scholar 

  7. J. F. Poyatos, J. I. Cirac and P. Zoller, Phys. Rev. Lett., 78, 390 (1997)

    Article  ADS  Google Scholar 

  8. M. H. Levitt, Prog. Nucl. Magn. Reson. Spectrosc, 18, 61 (1986)

    Article  ADS  Google Scholar 

  9. L. M. K. Vandersypen and I. L. Chuang, Rev. Mod. Phys. 76, 1037 – 1069 (2005)

    Article  ADS  Google Scholar 

  10. F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. P. Kouwenhoven and L. M. K. Vandersypen, Nature 442, 766 (2006)

    Article  ADS  Google Scholar 

  11. R. Hanson, B. Witkamp, L. M. K. Vandersypen, L. H. Willems van Beveren, J. M. Elzerman, and L. P. Kouwenhoven, Phys. Rev. Lett. 91, 196802 (2003)

    Article  ADS  Google Scholar 

  12. Z. Kis and F. Renzoni, Phys. Rev. A, 65, 032318 (2002)

    Article  ADS  Google Scholar 

  13. F. Troiani, E. Molinari, and U. Hohenester, Phys. Rev. Lett. 90, 206802 (2003)

    Article  ADS  Google Scholar 

  14. P. Chen, C. Piermarocchi, L. J. Sham, D. Gammon, and D. G. Steel, Phys. Rev. B, 69, 075320 (2003)

    Article  ADS  Google Scholar 

  15. C. Piermarocchi, P. Chen, L. J. Sham, and D. G. Steel, Phys. Rev. Lett. 89, 167402 (2002)

    Article  ADS  Google Scholar 

  16. N. Rosen and C. Zener, Phys. Rev., 40, 502 (1932)

    Article  MATH  ADS  Google Scholar 

  17. A. Bambini and P. R. Berman, Phys. Rev. A, 23, 2496 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  18. S. L. McCall and E. L. Hahn, Phys. Rev. 183, 457 (1969)

    Article  ADS  Google Scholar 

  19. A. Greilich, R. Oulton, E. A. Zhukov, I. A. Yugova, D. R. Yakovlev, M. Bayer, A. Shabaev, Al. L. Efros, I. A.Merkulov, V.Stavarache, D.Reuter, and A.Wieck, Phys. Rev. Lett. 96, 227401 (2006)

    Article  ADS  Google Scholar 

  20. K-M C. Fu, C. Santori, C. Stanley, M. C. Holland, and Y. Yamamoto, Phys. Rev. Lett. 95, 187405 (2005)

    Article  ADS  Google Scholar 

  21. F. Bloch, Phys. Rev. 70, 460 (1946)

    Article  ADS  Google Scholar 

  22. A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, Nat. Phys. 5, 262 (2009).

    Article  Google Scholar 

  23. X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon and L. J. Sham, Nature Physics 4, 692 (2008)

    Article  ADS  Google Scholar 

  24. Y. Tokura, W. G. Van der Wiel, T. Obata, and S. Tarucha, Phys. Rev. Lett. 96, 047202 (2006)

    Article  ADS  Google Scholar 

  25. V. N. Golovach, M. Borhani, and D. Loss, Phys. Rev. B 74, 165319 (2006)

    Article  ADS  Google Scholar 

  26. C. E. Pryor and M. E. Flatte, Applied Physics Letters 88, 233108, (2006)

    Article  ADS  Google Scholar 

  27. J. A. Gupta, R. Knobel, N. Samarth, D. D. Awschalom, Science 292, 2458 (2001)

    Article  ADS  Google Scholar 

  28. D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Nature 456, 218 (2008)

    Article  ADS  Google Scholar 

  29. I. I. Rabi, Phys. Rev. 51, 652 (1937)

    Article  MATH  ADS  Google Scholar 

  30. W. Kohn, Solid State Phys. 5, 257 (1957)

    Article  Google Scholar 

  31. J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Science 320, 349 (2008)

    Article  ADS  Google Scholar 

  32. K. Bergmann, H. Theuer, and B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998)

    Article  ADS  Google Scholar 

  33. S. E. Economou, L. J. Sham, Y. Wu, and D. G. Steel, Phys. Rev. B 74, 205415 (2006)

    Article  ADS  Google Scholar 

  34. S. E. Economou and T. L. Reinecke, Phys. Rev. Lett. 99, 217401 (2007)

    Article  ADS  Google Scholar 

  35. S. E. Economou and T. L. Reinecke, Phys. Rev. B 78, 115306 (2008)

    Article  ADS  Google Scholar 

  36. S. K. Saikin, C. Emary, D. G. Steel, and L. J. Sham, Phys. Rev. B 78, 235314 (2008)

    Article  ADS  Google Scholar 

  37. E. M. Gauger, P. P. Rohde, A. M. Stoneham, and B. W. Lovett, New J. Phys. 10 073027 (2008)

    Article  ADS  Google Scholar 

  38. S. McCall and E. Hahn, Phys. Rev. 183, 457 (1969)

    Article  ADS  Google Scholar 

  39. K. C. Nowack, F. H. L. Koppens, Yu. V. Nazarov, L. M. K. Vandersypen, Science 318, 1430 (2007)

    Article  ADS  Google Scholar 

  40. X. Xu, Y. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, Phys. Rev. Lett. 99, 097401 (2007)

    Article  ADS  Google Scholar 

  41. S. E. Economou, Ph.D. Thesis, University of California, San Diego (2006)

    Google Scholar 

  42. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, Science 325, 70 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia E. Economou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Economou, S.E., Reinecke, T.L. (2010). Optically induced spin rotations in quantum dots. In: Slavcheva, G., Roussignol, P. (eds) Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures. NanoScience and Technology, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12491-4_5

Download citation

Publish with us

Policies and ethics