Skip to main content

Spectral diffusion dephasing and motional narrowing in single semiconductor quantum dots

  • Chapter
  • First Online:
Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures

Part of the book series: NanoScience and Technology ((NANO,volume 0))

Abstract

In this chapter, we address the extrinsic dephasing mechanism of spectral diffusion that dominates the decoherence in semiconductor quantum dots at cryogenic temperature.We discuss the limits of random telegraph and Gaussian stochastic noises, and we describe the general effect of motional narrowing in the context of spectral noise. We emphasize the unconventional phenomenology of motional narrowing in standard semiconductor quantum dots at low incident power and temperature, that makes the quantum dot emission line a sensitive probe of the extrinsic reservoir fluctuation dynamics. We further show that the text book phenomenology of motional narrowing in nuclear magnetic resonance is recovered in quantum dots embedded in field-effect heterostructure. In that case, the electrical control of the mesoscopic environment of the quantum dot leads to conventional motional narrowing where the motion consists in carrier tunneling out of the defects around the quantum dot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, Nature Mater. 5, 887 (2006).

    Article  ADS  Google Scholar 

  2. C. Santori, D. Fattal, J. Vučkovic, G. Solomon, and Y. Yamamoto, Nature 419, 594 (2002).

    Article  ADS  Google Scholar 

  3. J. Bylander, I. Robert-Philip, and I. Abram, Eur. Phys. J. D 22, 295–301 (2003).

    ADS  Google Scholar 

  4. X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi and L. J. Sham, Science 301, 809 (2003).

    Article  ADS  Google Scholar 

  5. G. Cassabois and R. Ferreira, C. R. Physique 9, 830 (2008).

    Article  ADS  Google Scholar 

  6. S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Phys. Rev. Lett. 77, 3873 (1996).

    Article  ADS  Google Scholar 

  7. H. D. Robinson and B. B. Goldberg, Phys. Rev. B 61, R5086 (2000).

    Article  ADS  Google Scholar 

  8. V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, Phys. Rev. B 61, 9944 (2000).

    Article  ADS  Google Scholar 

  9. R. Kubo, p. 23, in Fluctuation, Relaxation and Resonance in Magnetic Systems, D. Ter Haar (Oliver and Boyd, Edinburgh, 1962).

    Google Scholar 

  10. K. Wódkiewicz, B. W. Shore, and J. H. Eberly, J. Opt. Soc. Am. B 1, 398 (1984).

    Article  ADS  Google Scholar 

  11. A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, R. Ferreira, Ph. Roussignol, J. SkibaSzymanska, R. Kolodka, A. I. Tartakovskii, M. Hopkinson, and M. S. Skolnick, New J. Phys. 11, 093032 (2009).

    Article  ADS  Google Scholar 

  12. N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948).

    Article  ADS  Google Scholar 

  13. A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, Nature Phys. 2, 759 (2006).

    Article  ADS  Google Scholar 

  14. C. Kammerer, G. Cassabois, C. Voisin, M. Perrin, C. Delalande, Ph. Roussignol, and J. M. Gérard, Appl. Phys. Lett. 81, 2737 (2002).

    Article  ADS  Google Scholar 

  15. I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, Phys. Rev. B 75, 073308 (2007)

    Article  ADS  Google Scholar 

  16. S. Seidl, M. Kroner, P. A. Dalgarno, A. Högele, J. M. Smith, M. Ediger, B. D. Gerardot, J. M. Garcia, P. M. Petroff, K. Karrai, and R. J. Warburton, Phys. Rev. B 72, 195339 (2005).

    Article  ADS  Google Scholar 

  17. R. Oulton, J. J. Finley, A. D. Ashmore, I. S. Gregory, D. J. Mowbray, M. S. Skolnick, M. J. Steer, San-Lin Liew, M. A. Migliorato, and A. J. Cullis, Phys. Rev. B 66, 045313 (2002).

    Article  ADS  Google Scholar 

  18. P. C. Sercel, Phys. Rev. B 51, 14532 (1995).

    Article  ADS  Google Scholar 

  19. V. Karpus and V. I. Perel, Sov. JETP 64, 1376 (1986).

    Google Scholar 

  20. S. W. Lin, C. Balocco, M. Missous, A. R. Peaker, and A. M. Song, Phys. Rev. B 72, 165302 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Cassabois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cassabois, G. (2010). Spectral diffusion dephasing and motional narrowing in single semiconductor quantum dots. In: Slavcheva, G., Roussignol, P. (eds) Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures. NanoScience and Technology, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12491-4_3

Download citation

Publish with us

Policies and ethics