Skip to main content

Part of the book series: NanoScience and Technology ((NANO,volume 0))

  • 1142 Accesses

Abstract

The origin of the dephasing of the S-P intersublevel transitions in semiconductor quantum dots is theoretically investigated. The coherence time of this transition is shown to be lifetime-limited at low temperature, while at higher temperature pure dephasing induced by the coupling to acoustic phonons dominates the coherence decay. Population relaxation is triggered by the combined effects of electron-LO-phonon strong coupling, leading to the polaron formation, and phonon anharmonicity. A good agreement is found between the modelling and temperature dependence of the four wave mixing signal measured in recent experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Semiconductor Macroatoms. Basic Physics and Quantum device Applications. Edited by F. Rossi. Imperial College Press. London (2005).

    Google Scholar 

  2. Ferreira R., Berthelot A., Grange T., Zibik E., Cassabois G. and Wilson L., Journ. Appl. Phys. 105, (2009).

    Article  Google Scholar 

  3. Bockelmann U. and Egeler T. Electron relaxation in quantum dots by means of Auger processes. Phys Rev. B 46, 15574 (1992).

    Article  ADS  Google Scholar 

  4. Ferreira R. and Bastard G. Phonon-assisted capture and intradot Auger relaxation in quantum dots. Appl. Phys. Lett. 74, 2818 (1999).

    Article  ADS  Google Scholar 

  5. Stier O., Grundmann M. and Bimberg D. Phys. Rev. B59, 5688 (1999).

    ADS  Google Scholar 

  6. Stier O. Electronic and Optical Properties of Quantum dots and Wires. Berlin Studies in Solid State Physics. Wissenshaft & Teknik. Verlag. Berlin (2001).

    Google Scholar 

  7. Williamson A. J. and Zunger A. Phys. Rev. B 59, 15819 (1999) and 61, 1978 (2000).

    Google Scholar 

  8. Zunger A. Phys. Stat. Sol.A 190, 467 (2002) and references cited therein.

    Article  ADS  Google Scholar 

  9. Lee S., Jönsson L., Wilkins J. W., Bryant G. W., Klimeck G. Phys. Rev. B 63, 195318 (2001).

    Article  ADS  Google Scholar 

  10. Frey F., Rebohle L., Muller T., Strasser G., Unterrainer K., N’guyen D. P., Ferreira F. and Bastard G. Bound-to-bound and bound-to-continuum optical transitions in combined quantum dot-superlattice systems. Phys. Rev. B 72, 155310 (2005).

    Article  ADS  Google Scholar 

  11. Sauvage S. et al. Long polaron lifetimein InAs/GaAs self assembled quantum dots. Phys. Rev. Lett. 88, 177402 (2002).

    Article  ADS  Google Scholar 

  12. Zibik E. A. et al. Intraband relaxation via polaron decay in InAs self assembled quantum dots. Phys. Rev. B 70, 161305 (R) (2004).

    Article  ADS  Google Scholar 

  13. Bockelmann U. and Bastard G. Phonon scattering and energy relaxation in two-, one- and zero-dimensional electron gases. Phys. Rev. B42, 8947 (1990).

    Article  ADS  Google Scholar 

  14. Benisty H., Sotomayor-Torres C. M. and Weisbuch C. Intrinsic mechanism for the poor luminescence of quantum box systems. Phys. Rev. B 44, 10945 (1991).

    Article  ADS  Google Scholar 

  15. Urayama J., Norris T. B., Singh J. and Bhattacharya P. Observation of phonon bottleneck in quantum dot electronic relaxation. Phys. Rev. Lett. 86, 4930 (2001).

    Article  ADS  Google Scholar 

  16. Murdin B. N. et al. Direct observation of the LO phonon bottleneck in wide GaAs / Ga1- xAlxAs quantum wells. Phys. Rev. B 55, 5171 (1997).

    Article  ADS  Google Scholar 

  17. Inoshita T. and Sakaki H. Density of states and phonon induced relaxation of electrons in semiconductor quantum dots. Phys. Rev. B 56, R4355 (1997).

    Article  ADS  Google Scholar 

  18. Hameau S. et al. Strong electron-phonon coupling regime in quantum dots: evidence for everlasting resonant polarons. Phys. Rev. Lett. 83, 4152 (1999).

    Article  ADS  Google Scholar 

  19. Ferreira R. and Bastard G. Electron-phonon interaction in Semiconductor Quantum Dots. in Semiconductor Macroatoms. Basic Physics and Quantum device Applications. Edited by F. Rossi. Imperial College Press. London (2005).

    Google Scholar 

  20. Li X. Q., Nakayama H. and Arakawa Y. Phonon bottleneck in quantum dots: Role of the lifetime of the confined optical phonons. Phys. Rev. B 59, 5069 (1999).

    Article  ADS  Google Scholar 

  21. Verzelen O. Ferreira R. and Bastard G. Polaron lifetime and energy relaxation in semiconductor quantum dots. Phys Rev. B 62, 4809 (2000).

    Article  ADS  Google Scholar 

  22. Grange T., Ferreira R. and Bastard G. Polaron relaxation in self assembled quantum dots: breakdown of the semiclassical model. Phys. Rev. B 76, 241304 (2007).

    Article  ADS  Google Scholar 

  23. Zibik A., Grange T., Carpenter B. A., Porter N. E., Ferreira R., Bastard G., Stehr D., Winnerl S., Helm M., Liu H. Y., Skolnick M. S. and Wilson L. R. Long lifetimes of quantum-dot intersublevel transitions in the terahertz range. Nature Materials 8, 803 – 807 (2009).

    Article  ADS  Google Scholar 

  24. Zibik E. A. et al Intersublevel polaron dephasing in self assembled quantum dots. Phys. Rev.B 77, 041307(R) (2008).

    Article  ADS  Google Scholar 

  25. Borri P., Langbein W, Schneider S., Woggon U., Sellin R. L., Ouyang D. and Bimberg D. Phys. Rev. Lett. 87, 157401 (2001).

    Article  ADS  Google Scholar 

  26. Borri P. and Langbein W. Four wave mixing dynamics of excitons in InGaAs self-assembled quantum dots. J. Phys. Condens. Matter 19, 295201 (2007).

    Article  Google Scholar 

  27. Grange T. Decoherence in quantum dots due to real and virtual transitions: A nonperturbative calculation. Phys. Rev.B 80, 245310 (2009).

    Article  ADS  Google Scholar 

  28. Huang K. and Rhys. A. Theory of light absorption and non radiative transitions in F centres. Proc. R. Soc. London ser A 204, 406 (1950).

    Article  MATH  ADS  Google Scholar 

  29. Vagov A., Axt V. M., Kuhn T., Langbein W., Borri P. and Woggon U. Nonmonotonous temperature dependence of the initial decoherence in quantum dots. Phys. Rev. B 70, 201305 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Grange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grange, T., Ferreira, R., Bastard, G. (2010). Decoherence of intraband transitions in InAs quantum dots. In: Slavcheva, G., Roussignol, P. (eds) Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures. NanoScience and Technology, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12491-4_2

Download citation

Publish with us

Policies and ethics