Skip to main content

Chiral Recognition Mechanism: Practical Considerations for Pharmaceutical Analysis of Chiral Compounds

  • Chapter
  • First Online:
Chiral Recognition in Separation Methods

Abstract

There are no particular differences between academic and industrial liquid chromatography chiral separations. In industry, throughput needs and time requirements force for a search for solutions, i.e., enantiomeric full separations, without time for additional investigations that could lead to an even better solution. The three-point interaction model is historically recalled and challenged. The established mechanisms on the large variety of commercially available chiral stationary phases are rapidly described. The chapter finishes with examples taken from actual enantiomeric separations encountered in a pharmaceutical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maier NM, Franco P, Lindner W (2001) Separation of enantiomers: needs, challenges, perspectives. J Chromatogr A 906:3–33

    CAS  Google Scholar 

  2. Pasteur L (1901) On the asymmetry of naturally occurring organic compounds. In: Richardson GM (ed) The foundations of stereo chemistry: memoirs by Pasteur, Van’t Hoff, Le Bel and Wislicenus. American Book Co., New York

    Google Scholar 

  3. Casey AF (1970) Stereochemistry and biological activity. In: Burger A (ed) Medicinal chemistry, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  4. Aboul-Enein H, Wainer IW (1997) The impact of stereochemistry on drug development and use. John Wiley & Sons, New York

    Google Scholar 

  5. Food and Drug Administration (1992) FDA’s policy statement for the development of new stereoisomeric drugs. 57 Fed. Reg. 22, 249

    Google Scholar 

  6. Committee for Proprietary Medical Products (1993) Working parties on quality, safety and efficacy of medical products. Note for guidance: investigation of chiral active substances. III/3501/91

    Google Scholar 

  7. Herper M, Kang P (2006) The world’s ten best-selling drugs. http://www.forbes.com/2006/03/21/pfizer-merck-amgen-cx_mh_pk_0321topdrugs.html. Accessed 26 Oct 2009

  8. Majors RE (1999) From nanograms to tons: chiral stationary phases in the pharmaceutical industry. LC-GC 17:400–405

    Google Scholar 

  9. Armstrong DW, Zhang B (2001) Chiral stationary phases for HPLC. Anal Chem 73:557A–561A

    CAS  Google Scholar 

  10. Wang CL, Armstrong DW, Risley DS (2007) Empirical observations and mechanistic insights on the first boron-containing chiral selector for LC and supercritical fluid chromatography. Anal Chem 79:8125–8135

    CAS  Google Scholar 

  11. Hoffmann CV, Pell R, Lammerhofer M, Lindner W (2008) Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC. Anal Chem 80:8780–8789

    CAS  Google Scholar 

  12. Massolini G, Temporini C, Calleri E (2008) Penicillin G acylase as chiral selector in LC and CE: exploring the origins of enantioselectivity. J Chromatogr B 875:20–29

    CAS  Google Scholar 

  13. Okamoto Y, Yashima E (2001) Polysaccharide derivatives for chromatographic separation of enantiomers. Angew Chem Int Ed 37:1020–1043

    Google Scholar 

  14. Berthod A (2009) Chiral recognition mechanisms with macrocyclic glycopeptide selectors. Chirality 21:167–175

    CAS  Google Scholar 

  15. Armstrong DW (1984) Chiral stationary phases for high performance liquid chromatographic separation of enantiomers: a mini-review. J Liq Chromatogr 7:353–376

    CAS  Google Scholar 

  16. Kano K (1997) Mechanisms for chiral recognition by cyclodextrins. J Phys Org Chem 10:286–291

    CAS  Google Scholar 

  17. Haginaka J (2001) Protein-based chiral stationary phases for high-performance liquid chromatography enantioseparations. J Chromatogr A 906:253–273

    CAS  Google Scholar 

  18. Wainer IW (1993) HPLC chiral stationary phases for the stereochemical resolution of enantiomeric compounds: The current state of the art. In: Wainer IW (ed) Drug stereochemistry: analytical methods and pharmacology, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  19. Macaudiere P, Lienne M, Tambute A, Caude M (1989) Pirkle type and related chiral stationary phases for enantiomeric resolution. In: Krstulovic AM (ed) Chiral separations by HPLC. Ellis Horwood Ltd, New York

    Google Scholar 

  20. Hyun MH (2006) Preparation and application of HPLC chiral stationary phases based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. J Sep Sci 29:750–761

    CAS  Google Scholar 

  21. Easson EH, Stedman E (1933) CLXX. Studies on the relationship between chemical constitution and physiological action. V. Molecular dissymmetry and physiological action. Biochem J 27:1257–1266

    CAS  Google Scholar 

  22. Dalgliesh CE (1952) The optical resolution of aromatic amino-acids on paper chromatograms. J Chem Soc 137:3940–3942

    Google Scholar 

  23. Lochmuller CH, Souter RW (1975) Chromatographic resolution of enantiomers: selective review. J Chromatogr 113:283–302

    CAS  Google Scholar 

  24. Davankov VA, Meyer VR, Rais M (1990) A vivid model illustrating chiral recognition induced by achiral structures. Chirality 2:208–210

    CAS  Google Scholar 

  25. Davankov VA (1997) The nature of chiral recognition: is it a three-point interaction? Chirality 9:99–102

    CAS  Google Scholar 

  26. Meyer VR, Rais M (1989) A vivid model of chiral recognition. Chirality 1:167–169

    CAS  Google Scholar 

  27. Pirkle WH, Welch CJ, Lamm B (1992) Design, synthesis, and evaluation of an improved enantioselective naproxen selector. J Org Chem 57:3854–3860

    CAS  Google Scholar 

  28. Ogston AG (1948) Interpretation of experiments on metabolic process using isotopic trace elements. Nature 162:963

    CAS  Google Scholar 

  29. Shallenberger RS, Acree RE (1967) Molecular theory of sweet taste. Nature 216:480–482

    CAS  Google Scholar 

  30. Burger A (1970) Relation of chemical structure and biological activity. In: Burger A (ed) Medicinal chemistry, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  31. Garten S, Biedermann PU, Agranat I, Topiol S (2005) Two contact-point chiral distinction: model CHFClBr dimers. Chirality 17:S159–S170

    CAS  Google Scholar 

  32. Kafri R, Lancet D (2004) Probability rule for chiral recognition. Chirality 16:369–378

    CAS  Google Scholar 

  33. Mesecar AD, Koshland DE Jr (2000) A new model for protein stereospecificity. Nature 403:614–615

    CAS  Google Scholar 

  34. Sundaresan V, Abrol R (2002) Towards a general model for protein–substrate stereoselectivity. Protein Sci 11:1330–1339

    CAS  Google Scholar 

  35. Sundaresan V, Abrol R (2005) Biological chiral recognition: the substrate’s perspective. Chirality 17:S30–S39

    CAS  Google Scholar 

  36. Bentley R (1983) Three-point attachment: past, present, but no future. Trans N Y Acad Sci Ser II 41:5–24

    CAS  Google Scholar 

  37. Wainer IW, Alembik MC (1986) Resolution of enantiomeric amides on cellulose based chiral stationary phases: steric and electronic effects. J Chromatogr 358:85–93

    CAS  Google Scholar 

  38. Booth TD, Wainer IW (1996) Investigation of the enantioselective separations of a-alkyl arylcarboxylic acids on an amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase using quantitative structure–enantioselective retention relationships (QSERR): identification of a conformationally driven chiral recognition mechanism. J Chromatogr A 737:157–169

    CAS  Google Scholar 

  39. Jozwiak K, Moaddel R, Ravichandran S, Plazinska A, Kozal J, Patel S, Yamaguchi R, Wainer IW (2008) Exploring enantiospecific ligand–protein interactions using cellular membrane affinity chromatography: chiral recognition as a dynamic process. J Chromatogr B 875:200–207

    CAS  Google Scholar 

  40. Berthod A, He BL, Beesley TE (2004) Temperature and enantioseparation by macrocyclic glycopeptide chiral stationary phases. J Chromatogr A 1060:205–214

    CAS  Google Scholar 

  41. Stringham RW, Blackwell JA (1997) Factor that control successful entropically driven chiral separations in SFC and HPLC. Anal Chem 69:1414–1420

    CAS  Google Scholar 

  42. Yashima E, Okamoto Y (1997) Chiral recognition mechanism of polysaccharides chiral stationary phases. In: Aboul-Enein HY, Wainer IW (eds) The impact of stereochemistry on drug development and use. Wiley, New York

    Google Scholar 

  43. Yashima E (2001) Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation. J Chromatogr A 906:105–125

    CAS  Google Scholar 

  44. Tachibana K, Ohnishi A (2001) Reversed-phase liquid chromatographic separation of enantiomers on polysaccharide type chiral stationary phases. J Chromatogr A 906:127–154

    CAS  Google Scholar 

  45. Chankvetadze B, Yashima E, Okamoto Y (1994) Chloromethylphenylcarbamate derivatives of cellulose as chiral stationary phases for high-performance liquid chromatography. J Chromatogr A 670:39–49

    CAS  Google Scholar 

  46. Chankvetadze B, Chankvetadze L, Sidamonide S, Kasashima E, Yashima E, Okamoto Y (1997) 3-Fluoro-, 3-chloro- and 3-bromo-5-methylphenylcarbamates of cellulose and amylose as chiral stationary phases for high performance liquid chromatographic enantioseparation. J Chromatogr A 787:67–77

    CAS  Google Scholar 

  47. Chankvetadze B, Yashima E, Okamoto Y (1995) Dimethyl-, dichloro- and chloromethylphenylcarbamates of amylose as chiral stationary phases for high-performance liquid chromatography. J Chromatogr A 694:101–109

    CAS  Google Scholar 

  48. Okamoto Y, Kawashima M, Hatada K (1986) Chromatographic resolution. XI. Controlled chiral recognition of cellulose triphenylcarbamate derivatives supported on silica gel. J Chromatogr 363:173–186

    CAS  Google Scholar 

  49. Okamoto Y, Aburatani R, Fukumoto T, Hatada K (1987) Chromatographic resolution. XVII. Useful chiral stationary phases for HPLC. Amylose tris(3,5-dimethylphenyl carbamate) and tris(3,5-dichlorophenylcarbamate) supported on silica gel. Chem Lett 9:1857–1860

    Google Scholar 

  50. Thunberg L, Hashemi J, Andersson S (2008) Comparative study of coated and immobilized polysaccharide-based chiral stationary phases and their applicability in the resolution of enantiomers. J Chromatogr B 875:72–80

    CAS  Google Scholar 

  51. Franco P, Zhang T (2008) Common approaches for efficient method development with immobilised polysaccharide-derived chiral stationary phases. J Chromatogr B 875:48–56

    CAS  Google Scholar 

  52. Kasat RB, Wee SY, Loh JX, Wang NL, Franses EI (2008) Effect of the solute molecular structure on its enantioresolution on cellulose tris(3,5-dimethylphenylcarbamate). J Chromatogr B 875:81–92

    CAS  Google Scholar 

  53. Supelco/Astec (2004) Chirobiotic handbook: a guide to using macrocyclic glycopeptide bonded phases for chiral LC separations, 5th edn. Supelco/Sigma-Aldrich, Bellefonte, PA

    Google Scholar 

  54. Armstrong DW, Tang Y, Chen S, Zhou Y, Bagwill C, Chen JR (1994) Macrocyclic antibiotics as a new class of chiral selectors for liquid chromatography. Anal Chem 66:1473–1484

    CAS  Google Scholar 

  55. Armstrong DW, Liu Y, Ekborgott KH (1995) A covalently bonded teicoplanin chiral stationary phase for HPLC enantioseparations. Chirality 7:474–497

    CAS  Google Scholar 

  56. Ekborg-Ott KH, Liu Y, Armstrong DW (1998) Highly enantioselective HPLC separations using the covalently bonded macrocyclic antibiotic, ristocetin A, chiral stationary phase. Chirality 10:434–483

    CAS  Google Scholar 

  57. Berthod A, Chen X, Kullman JP, Armstrong DW, Gasparrini F, D’Acquarica I, Villani C, Carotti A (2000) Role of the carbohydrate moieties in chiral recognition on teicoplanin-based LC stationary phases. Anal Chem 72:1767–1780

    CAS  Google Scholar 

  58. Sun P, Krishnan A, Yadav A, MacDonnell FM, Armstrong DW (2008) Enantioseparations of chiral ruthenium(II) polypyridyl complexes using HPLC with macrocyclic glycopeptide chiral stationary phases (CSPs). J Mol Struct 890:75–80

    CAS  Google Scholar 

  59. Berthod A, Xiao TL, Liu Y, Jenks WS, Armstrong DW (2002) Separation of chiral sulfoxides by liquid chromatography using macrocyclic glycopeptide chiral stationary phases. J Chromatogr A 955:53–69

    CAS  Google Scholar 

  60. Xiao TL, Rozhkov RV, Larock RC, Armstrong DW (2003) Separation of the enantiomers of substituted dihydrofurocoumarins by HPLC using macrocyclic glycopeptide chiral stationary phases. Anal Bioanal Chem 377:639–654

    CAS  Google Scholar 

  61. Chen S, Liu Y, Armstrong DW, Borrell JI, Martinez-Teipel B, Matallana JL (1995) Enantioresolution of substituted 2-methoxy-6-oxo-1,4,5,6-tetrahydropyridine-3-carbonitriles on macrocyclic antibiotic and cyclodextrin stationary phases. J Liq Chromatogr Relat Technol 18:1495–1507

    CAS  Google Scholar 

  62. Nair UB, Chang SSC, Armstrong DW, Rawjee YY, Eggleston DS, Mcardlez JV (1996) Elucidation of vancomycin’s enantioselective binding site using its copper complex. Chirality 8:590–595

    CAS  Google Scholar 

  63. Berthod A, Valleix A, Tizon V, Leonce E, Caussignac C, Armstrong DW (2001) Retention and selectivity of teicoplanin stationary phases after copper complexation and isotopic exchange. Anal Chem 73:5499–5508

    CAS  Google Scholar 

  64. Armstrong DW, Rundlett KL, Chen JR (1994) Evaluation of the macrocyclic antibiotic vancomycin as a chiral selector for capillary electrophoresis. Chirality 6:496–509

    CAS  Google Scholar 

  65. Gasper MP, Berthod A, Nair UB, Armstrong DW (1996) Comparison and modeling study of vancomycin, ristocetin A, and teicoplanin for CE enantioseparations. Anal Chem 68:2501–2514

    CAS  Google Scholar 

  66. He L, Beesley TE (2005) Applications of enantiomeric gas chromatography: a review. J Liq Chromatogr Relat Technol 28:1075–1114

    Google Scholar 

  67. Ward TJ (1994) Chiral media for capillary electrophoresis. Anal Chem 66:632A–640A

    CAS  Google Scholar 

  68. Armstrong DW, DeMond W (1984) Cyclodextrin bonded phases for the liquid chromatographic separation of optical, geometrical, and structural isomers. J Chromtogr Sci 22:411–415

    CAS  Google Scholar 

  69. Armstrong DW, Ward TJ, Armstrong RD, Beesley TE (1986) Separation of drug stereoisomers by the formation of β-cyclodextrin inclusion complexes. Science 232:1132–1135

    CAS  Google Scholar 

  70. Facklam C, Modler A (1994) Separation of some enantiomers and diastereomers of propranolol derivatives by high-performance liquid chromatography. J Chromatogr A 664:203–211

    CAS  Google Scholar 

  71. Bressolle F, Audran M, Pham TN, Vallon JJ (1996) Cyclodextrins and enantiomeric separations of drugs by liquid chromatography and capillary electrophoresis: basic principles and new developments. J Chromatogr B 687:303–336

    Google Scholar 

  72. Hinze WL, Riehl TE, Armstrong DW, Demond W, Alak A, Ward T (1985) Liquid chromatographic separation of enantiomers using a chiral beta-cyclodextrin-bonded stationary phase and conventional aqueous-organic mobile phases. Anal Chem 57:237–242

    CAS  Google Scholar 

  73. Chang SC, Reid GL, Chen S, Chang CD, Armstrong DW (1993) Evaluation of a new polar-organic high-performance liquid chromatographic mobile phase for cyclodextrin-bonded chiral stationary phases. Trends Anal Chem 12:144–153

    CAS  Google Scholar 

  74. Lee SH, Berthod A, Armstrong DW (1992) Systematic study on the resolution of derivatized amino acids enantiomers on different cyclodextrin-bonded stationary phases. J Chromatogr 603:83–93

    CAS  Google Scholar 

  75. Stalcup AM, Chang SC, Armstrong DW, Pitha J (1990) (S)-2-Hydroxypropyl-β-cyclodextrin, a new stationary phase for reversed-phase liquid chromatography. J Chromatogr 513:181–194

    CAS  Google Scholar 

  76. Armstrong DW, Stalcup AM, Hilton ML, Duncan JD, Faulkner JR, Chang SC (1990) Derivatized cyclodextrins for normal-phase liquid chromatographic separation of enantiomers. Anal Chem 62:1610–1615

    CAS  Google Scholar 

  77. Stalcup AM, Chang SC, Armstrong DW (1991) Effect of the configuration of the substituents of derivatized beta-cyclodextrin bonded phases on enantioselectivity in normal-phase liquid chromatography. J Chromatogr 540:113–128

    CAS  Google Scholar 

  78. Zhong Q, He L, Beesley TE, Trahanovsky WS, Sun P, Wang C, Armstrong DW (2006) Development of dinitrophenylated cyclodextrin derivatives for enhanced enantiomeric separations by high-performance liquid chromatography. J Chromatogr A 1115:19–45

    CAS  Google Scholar 

  79. Zhong Q, He L, Beesley TE, Trahanovsky WS, Sun P, Wang C, Armstrong DW (2006) Optimization of 2,6-dinitro-4-trifluoromethylphenyl ether substituted cyclodextrin bonded stationary phases for HPLC separation of enantiomers. Chromatographia 64:147–155

    CAS  Google Scholar 

  80. Armstrong DW, Chang LW, Chang SC, Wang X, Ibrahim H, Reid GR, Beesley TE (1997) Comparison of the selectivity and retention of beta-cyclodextrin vs. heptakis-2,3-O-dimethyl-beta-cyclodextrin LC stationary phases for structural and geometric isomers. J Liq Chromatogr Relat Technol 20:3279–3295

    CAS  Google Scholar 

  81. Macaudiere P, Caude M, Rosset R, Tambute A (1988) Chiral resolution of a series of 3-thienylcyclohexylglycolic acids by liquid or subcritical fluid chromatography. A mechanistic study. J Chromatogr 450:255–269

    CAS  Google Scholar 

  82. Ilisz I, Berkecz R, Forro E, Fulop F, Armstrong DW, Peter A (2009) The Role of π-acidic and π-basic chiral stationary phases in the high-performance liquid chromatographic enantioseparation of unusual β-amino acids. Chirality 21:339–348

    CAS  Google Scholar 

  83. Williams KL, Sander LC, Wise SA (1996) Comparison of liquid and supercritical fluid chromatography using naphthylethylcarbamoylated-β-cyclodextrin chiral stationary phases. J Chromatogr A 746:91–101

    CAS  Google Scholar 

  84. Wang RQ, Ong TT, Ng SC (2008) Synthesis of cationic β-cyclodextrin derivatives and their applications as chiral stationary phases for high-performance liquid chromatography and supercritical fluid chromatography. J Chromatogr A 1203:185–192

    CAS  Google Scholar 

  85. Macaudiere P, Caude M, Rosset R, Tambute A (1987) Chiral resolution of racemic amides and phosphine oxides on a β-cyclodextrin-bonded stationary phases by super critical fluid chromatography. J Chromatogr 405:135–143

    CAS  Google Scholar 

  86. Allenmark S, Bomgren B, Boren H (1983) Direct liquid chromatographic separation of enantiomers on immobilized protein stationary phases. III. Optical resolution of a series of N-aroyl D,l-amino acids by high-performance liquid chromatography on bovine serum albumin covalently bound to silica. J Chromatogr 264:63–68

    CAS  Google Scholar 

  87. Domenici E, Bertucci C, Salvadori P, Felix G, Cahagne I, Montellier S, Wainer IW (1990) Synthesis and chromatographic properties of an HPLC chiral stationary phase based upon human serum albumin. Chromatographia 29:170–176

    CAS  Google Scholar 

  88. Hermansson J (1983) Direct liquid chromatographic resolution of racemic drugs using alpha1-acid glycoprotein as the chiral stationary phase. J Chromatogr 269:71–80

    CAS  Google Scholar 

  89. Miwa T, Ichikawa M, Tsuno M, Hattori T, Miyakawa T, Kayano M, Miyake Y (1987) Direct liquid chromatographic resolution of racemic compounds. Use of ovomucoid as a column ligand. Chem Pharm Bull 35:682–686

    CAS  Google Scholar 

  90. Miwa T, Miyakawa T, Miyake Y (1988) Characteristics of an avidin-conjugated column in direct liquid chromatographic resolution of racemic compounds. J Chromatogr 457:227–233

    CAS  Google Scholar 

  91. Erlandsson P, Marle I, Hansson L, Isaksson R, Petterson C, Petterson G (1990) Immobilized cellulase (CBH I) as a chiral stationary phase for direct resolution of enantiomers. J Am Chem Soc 112:4573–4574

    CAS  Google Scholar 

  92. Haginaka J, Miyano Y, Saizen Y, Seyama C, Murashima T (1995) Separation of enantiomers on a pepsin-bonded column. J Chromatogr A 708:161–168

    CAS  Google Scholar 

  93. ChromTech user’s guide: separation of chiral compounds on Chiral-AGP, Chiral-CBH, Chiral-HSA, 2nd edn. ChromTech, Congleton

    Google Scholar 

  94. Vandenbosch C, Massart D, Lindner W (1992) Evaluation of six chiral stationary phases in LC for their selectivity towards drug enantiomers. J Pharm Biomed Anal 10:895–908

    CAS  Google Scholar 

  95. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng 12:439–446

    CAS  Google Scholar 

  96. Hage DS (2001) Chromatographic and electrophoretic studies of protein binding to chiral solutes. J Chromatogr A 906:459–481

    CAS  Google Scholar 

  97. Yang Y, Hage DS (1993) Characterization of the binding and chiral separation of d- and l-tryptophan on a high-performance immobilized human serum albumin column. J Chromatogr A 645:241–250

    CAS  Google Scholar 

  98. Yang Y, Hage DS (1996) Role of binding capacity versus binding strength in the separation of chiral compounds on protein-based high-performance liquid chromatography columns. Interactions of d- and l-tryptophan with human serum albumin. J Chromatogr A 725:273–285

    CAS  Google Scholar 

  99. Yang Y, Hage DS (1997) Effect of mobile phase composition on the binding kinetics of chiral solutes on a protein-based high-performance liquid chromatography column: interactions of d- and l-tryptophan with immobilized human serum albumin. J Chromatogr A 766:15–25

    CAS  Google Scholar 

  100. Domenici E, Bertucci C, Salvadori P, Wainer IW (1991) Use of a human serum albumin-based high-performance liquid chromatography chiral stationary phase for the investigation of protein binding: detection of the allosteric interaction between warfarin and benzodiazepine binding sites. J Pharm Sci 80:164–166

    CAS  Google Scholar 

  101. Haginaka J (2008) Recent progresses in protein-based chiral stationary phases for enantioseparations in liquid chromatography. J Chromatogr B 875:12–19

    CAS  Google Scholar 

  102. Massolini G, Temporini C, Calleri E (2008) Penicillin G acylase as chiral selector in LC and CE: exploring the origins of enantioselectivity. J Chromatogr B 875:20–29

    CAS  Google Scholar 

  103. Gasparrinia F, Misitia D, Villani C (2001) High-performance liquid chromatography chiral stationary phases based on low-molecular-mass selectors. J Chromatogr A 906:35–50

    Google Scholar 

  104. Pirkle WH, Welch CJ, Lamm B (1992) Design, synthesis, and evaluation of an improved enantioselective naproxen selector. J Org Chem 57:3854–3860

    CAS  Google Scholar 

  105. Regis Technologies chiral application guide VI. Regis Technologies, Morton Grove, IL

    Google Scholar 

  106. Pirkle WH, House DW (1979) Chiral high-pressure liquid chromatographic stationary phases. 1. Separation of the enantiomers of sulfoxides, amines, amino acids, alcohols, hydroxy acids, lactones, and mercaptans. J Org Chem 44:1957–1960

    CAS  Google Scholar 

  107. Pirkle WH, Burke JA (1991) Chiral stationary phase designed for β-blockers. J Chromatogr A 557:173–185

    CAS  Google Scholar 

  108. Pirkle WH, Murray PG (1993) Chiral stationary phase design: use of intercalative effects to enhance enantioselectivity. J Chromatogr 641:11–19

    CAS  Google Scholar 

  109. Pirkle WH, Gan KZ (1997) Facile and predictable means of separating the enantiomers of 5-arylhydantoins. J Chromatogr A 790:65–71

    CAS  Google Scholar 

  110. Pirkle WH, Welch CJ, Wilson S (1994) Assignment of absolute configuration to an improved enantioselective naproxen selector. Chirality 6:615–622

    CAS  Google Scholar 

  111. Villani C, Pirkle WH (1995) Direct high-performance liquid chromatographic resolution of planar chiral tricarbonyl (η6-arene)–chromium(0) complexes. J Chromatogr A 693:63–68

    CAS  Google Scholar 

  112. Pirkle WH, Pochapsky TC (1987) Chiral molecular recognition in small bimolecular systems: a spectroscopic investigation into the nature of diastereomeric complexes. J Am Chem Soc 109:5975–5982

    CAS  Google Scholar 

  113. Pirkle WH, Welch CJ (1994) An investigation into the role of salvation in a well characterized chiral recognition system. J Liq Chromatogr 14:2027–2042

    Google Scholar 

  114. Pirkle WH, Welch CJ, Hyun MH (1992) Concerning the role of face-to-edge π–π interactions in chiral recognition. J Chromatogr 607:126–130

    CAS  Google Scholar 

  115. Pirkle WH, Murry PG, Burke JA (1993) Use of homologous series of analytes as mechanistic probes to investigate the origins of enantioselectivity two chiral stationary phases. J Chromatogr 641:21–29

    CAS  Google Scholar 

  116. Pirkle WH, Koscho ME (1997) Predictable chromatographic separations of enantiomers: acids and their derivatives. J Chromatogr A 761:65–70

    CAS  Google Scholar 

  117. Lammerhofer M, Lindner W (1996) Quinine and quinidine derivatives as chiral selectors. I. Brush type chiral stationary phases for HPLC based on cinchonan carbamates and their application as chiral anion exchangers. J Chromatogr A 741:33–48

    Google Scholar 

  118. Maier NM, Nicoletti L, Lammerhofer M, Lindner W (1999) Enantioselective anion exchangers based on cinchona alkaloid-derived carbamates: influence of C8/C9 stereochemistry on chiral recognition. Chirality 11:522–528

    CAS  Google Scholar 

  119. Czerwenka C, Lammerhofer M, Maier NM (2002) Direct high-performance liquid chromatographic separation of peptide enantiomers: study on chiral recognition by systematic evaluation of the influence of structural features of the chiral selectors on enantioselectivity. Anal Chem 74:5658–5666

    CAS  Google Scholar 

  120. Czerwenka C, Lammerhofer M, Lindner W (2003) Structure–enantioselectivity relationships for the study of chiral recognition in peptide enantiomer separation on cinchona alkaloid-based chiral stationary phases by HPLC: influence of the N-terminal protecting group. J Sep Sci 26:1499–1508

    CAS  Google Scholar 

  121. Oberleitner WR, Maier NM, Lindner W (2002) Enantioseparation of various amino acid derivatives on a quinine based chiral anion-exchange selector at variable temperature conditions. Influence of structural parameters of the analytes on the apparent retention and enantioseparation characteristics. J Chromatogr A 960:97–108

    CAS  Google Scholar 

  122. Czerwenka C, Lammerhofer M, Lindner W (2003) Micro-HPLC and standard-size HPLC for the separation of peptide stereoisomers employing an ion-exchange principle. J Pharm Biomed Anal 30:1789–1800

    CAS  Google Scholar 

  123. Krawinkler KH, Gavioli E, Maier NM, Lindner W (2003) Evaluation of different surface-anchoring strategies for cinchona carbamate type selectors. Chromatographia 58:555–564

    CAS  Google Scholar 

  124. Pietle V, Lammerhofer M, Bischoff K, Lindner W (1997) High-performance liquid chromatographic enantioseparation of N-protected α-amino acids using nonporous silica modified by a quinine carbamate as chiral stationary phase. Chirality 9:157–161

    Google Scholar 

  125. Hoffmann CV, Reischl R, Maier NM, Lammerhofer M, Lindner W (2009) Stationary phase-related investigations of quinine-based zwitterionic chiral stationary phases operated in anion-, cation-, and zwitterion-exchange modes. J Chromatogr A 1216:1147–1156

    CAS  Google Scholar 

  126. Sousa LR, Sogah GDY, Hoffman DH, Cram DJ (1978) Host–guest complexation. 12. Total optical resolution of amine and amino ester salts by chromatography. J Am Chem Soc 100:4569–4576

    CAS  Google Scholar 

  127. Sogah GDY, Cram DJ (1979) Host–guest complexation. 14. Host covalently bound to polystyrene resin for chromatographic resolution of enantiomers of amino acid and ester salts. J Am Chem Soc 101:3035–3042

    CAS  Google Scholar 

  128. Shinbo T, Yamaguchi T, Nishimura K, Sugiura M (1987) Chromatographic separation of racemic amino acids by use of chiral crown ether-coated reversed-phase packings. J Chromatogr 405:145–153

    CAS  Google Scholar 

  129. Shinbo T, Yamaguchi T, Yanagishita H, Kitamoto D, Sakaki K, Sugiura M (1992) Improved crown ether-based chiral stationary phase. J Chromatogr 625:101–108

    CAS  Google Scholar 

  130. Jin YZ, Hirose K, Nakamura T, Nishioka R, Nishioka R, Ueshige T, Tobe Y (2006) Preparation and evaluation of a chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether having a phenolic hydroxy group for enantiomer separation of amino compounds. J Chromatogr A 1129:201–207

    CAS  Google Scholar 

  131. Hyun MH, Jin JS, Lee W (1998) Liquid chromatographic resolution of racemic amino acids and their derivatives on a new chiral stationary phase based on crown ether. J Chromatogr A 822:155–161

    Google Scholar 

  132. Hyun MH, Jin JS, Koo HJ, Lee W (1999) Liquid chromatographic resolution of racemic amines and amino alcohols on a chiral stationary phase derived from crown ether. J Chromatogr A 837:75–82

    CAS  Google Scholar 

  133. Machida Y, Nishi H, Nakamura K, Nakai H, Sato T (1998) Enantiomer separation of amino compounds by a novel chiral stationary phase derived from crown ether. J Chromatogr A 805:85–92

    CAS  Google Scholar 

  134. Steffeck RJ, Zelechonok Y, Gahm KH (2002) Enantioselective separation of racemic secondary amines on a chiral crown ether-based liquid chromatography stationary phase. J Chromatogr A 947:301–305

    CAS  Google Scholar 

  135. Zhang D, Li F, Kim DH, Choi HJ, Hyun MH (2005) Resolution of β-blockers on a chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid: unusual temperature effect. J Chromatogr A 1083:89–95

    CAS  Google Scholar 

  136. Choi HJ, Park YJ, Hyun MH (2007) Liquid chromatographic resolution of secondary amino alcohols on a chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. Dependence of temperature effect on analyte structure. J Chromatogr A 1164:235–239

    CAS  Google Scholar 

  137. Hyun MH, Cho YJ, Jin JS (2002) Liquid chromatographic direct resolution of β-amino acids on a chiral crown ether stationary phase. J Sep Sci 25:648–652

    CAS  Google Scholar 

  138. Hyun MH, Tan G, Cho YJ (2004) Liquid chromatographic resolution of aryl-amino ketones on chiral stationary phases based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. J Liq Chromatogr Relat Technol 27:1671–1680

    CAS  Google Scholar 

  139. Hyun MH, Han SC, Jin JS, Lee W (2000) Separation of the stereoisomers of racemic fluoroquinolone antibacterial agents on a crown-ether-based chiral HPLC stationary phase. Chromatographia 52:473–476

    CAS  Google Scholar 

  140. Cram DJ (1988) The design of molecular hosts, guests, and their complexes. J Incl Phenom 6:397–413

    CAS  Google Scholar 

  141. Gerbaux P, De Winter J, Cornil D, Ravicini K, Pesesse G, Cornil J, Flammang R (2008) Noncovalent interactions between (18-crown-6)-tetracarboxylic acid and amino acids: electrospray–ionization mass spectrometry investigation of the chiral-recognition processes. Chem Eur J 14:11039–11049

    CAS  Google Scholar 

  142. Krstulovic AM, Fouchet MH, Burke JT, Gillet G, Durand A (1988) Direct enantiomeric separation of betaxolol with applications to analysis of bulk drug and biological samples. J Chromatogr 452:477–483

    CAS  Google Scholar 

  143. Ye YK, Stringham RW (2006) The effect of acidic and basic additives on the enantioseparation of basic drugs using polysaccharide-based chiral stationary phases. Chirality 18:519–530

    CAS  Google Scholar 

  144. Liu Y, Berthod A, Mitchell CR, Xiao TL, Zhang B, Armstrong DW (2002) Super/subcritical fluid chromatography chiral separations with macrocyclic glycopeptide stationary phases. J Chromatogr A 978:185–204

    CAS  Google Scholar 

  145. Karlsson A, Aspegren A (2000) Enantiomeric separation of amino alcohols on protein phases using statistical experimental design: a comparative study. J Chromatogr A 866:15–23

    CAS  Google Scholar 

  146. Aboul-Enein HY, Serignese V (1995) Direct separation of albuterol enantiomers in biological fluids and pharmaceutical formulations using α1-acid glycoprotein and Pirkle urea type columns. Chirality 7:158–162

    CAS  Google Scholar 

  147. Aubry A, Sebastian DS, Williams R, Boucher RJ (2001) Column selection and method development for the determination of the enantiomeric purity of investigational non-nucleoside reverse transcriptase inhibitors. Chirality 13:193–198

    CAS  Google Scholar 

  148. He L, Shi Y et al Unpublished results

    Google Scholar 

  149. Zhao Y, Woo G, Thomas S, Semin D, Sandra P (2003) Rapid method development for chiral separation in drug discovery using sample pooling and supercritical fluid chromatography–mass spectrometry. J Chromatogr A 1003:157–166

    CAS  Google Scholar 

  150. He BL, Shi Y (2008) Comprehensive chiral HPLC method development for pharmaceutical compounds during late stage development. Am Pharm Rev 11:47–52

    CAS  Google Scholar 

  151. Laskar DB, Zeng L, Xu R, Kassel DB (2008) Parallel SFC/MS-MUX screening to assess enantiomeric purity. Chirality 20:885–895

    CAS  Google Scholar 

  152. White C (2005) Integration of supercritical fluid chromatography into drug discovery as a routine support tool: Part I. Fast chiral screening and purification. J Chromatogr A 1074:163–173

    CAS  Google Scholar 

  153. Maftouh M, Granier-Loyaux C, Chavana E, Marinia J, Pradinesa A, Heydenb YV, Picarda C (2005) Screening approach for chiral separation of pharmaceuticals: Part III. Supercritical fluid chromatography for analysis and purification in drug discovery. J Chromatogr A 1088:67–81

    CAS  Google Scholar 

  154. Berthod A, Chang SC, Armstrong DW (1992) Empirical procedure that uses molecular structure to predict enantioselectivity of chiral stationary phases. Anal Chem 64:395–404

    CAS  Google Scholar 

  155. Roussel C, Pierrot-Sanders J, Heitmann I, Piras P (2001) CHIRBASE: database current status and derived research applications using molecular similarity, decision tree and 3D “enantiophore” search. In: Subramanian G (ed) Chiral separation techniques: a practical approach, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim (Federal Republic of Germany)

    Google Scholar 

  156. Wetli HA, Francotte E (2007) Automated screening platform with isochronal-parallel analysis and conditioning for rapid method development of chiral separations. J Sep Sci 30:1255–1261

    CAS  Google Scholar 

  157. Villeneuve MS, Anderegg RJ (1998) Analytical supercritical fluid chromatography using fully automated column and modifier selection valves for the rapid development of chiral separations. J Chromatogr A 826:217–225

    CAS  Google Scholar 

  158. Perrin C, Vu VA, Matthijs N, Maftouh M, Massart DL, Vander Heyden Y (2002) Screening approach for chiral separation of pharmaceuticals Part I. Normal-phase liquid chromatography. J Chromatogr A 947:69–83

    CAS  Google Scholar 

  159. Perrin C, Matthijs N, Mangelings D, Maftouh M, Massart DL, Vander Heyden Y (2002) Screening approach for chiral separation of pharmaceuticals: Part II. Reversed-phase liquid chromatography. J Chromatogr A 966:119–134

    CAS  Google Scholar 

  160. Matthijs N, Maftouh M, Vander Heyden Y (2006) Screening approach for chiral separation of pharmaceuticals: IV. Polar organic solvent chromatography. J Chromatogr A 1111:48–61

    CAS  Google Scholar 

  161. Puente M, White CT, Rivera-Sagredo A, Reilly J, Burton K, Harvey G (2003) Impact of normal-phase gradient elution in chiral chromatography: a novel, robust, efficient and rapid chiral screening procedure. J Chromatogr A 983:101–114

    Google Scholar 

  162. Zhang Y, Watts W, Nogle L (2004) Rapid method development for chiral separation in drug discovery using multi-column parallel screening and circular dichroism signal pooling. J Chromatogr A 1049:75–84

    CAS  Google Scholar 

  163. Andersson ME, Aslan D, Clarke A, Roeraade J, Hagman G (2003) Evaluation of generic chiral liquid chromatography screens for pharmaceutical analysis. J Chromatogr A 1005:83–101

    CAS  Google Scholar 

  164. De la Puente ML (2004) Highly sensitive and rapid normal-phase chiral screen using high-performance liquid chromatography–atmospheric pressure ionization tandem mass spectrometry (HPLC/MS). J Chromatogr A 1055:55–62

    Google Scholar 

  165. Matthijs N, Perrin C, Maftouh M (2004) Definition and system implementation of strategies for method development of chiral separations in normal- or reversed-phase liquid chromatography using polysaccharide-based stationary phases. J Chromatogr A 1041:119–133

    CAS  Google Scholar 

  166. He BL, Shi Y, Kleintop B, Raglione T (2008) Direct and indirect separations of five isomers of brivanib alaninate using chiral high-performance liquid chromatography. J Chromatogr B 875:122–135

    CAS  Google Scholar 

  167. Borman P, Boughtflower B, Cattanach K, Crane K, Freebraine K, Jonas G, Mutton I, Patel A, Sanders M, Thompson D (2003) Comparative performances of selected chiral HPLC, SFC, and CE systems with a chemically diverse sample set. Chirality 15:S1–S12

    CAS  Google Scholar 

  168. Welch CJ, Biba M, Gouker JR, Kath G, Augustine P, Hosek P (2007) Solving multicomponent chiral separation challenges using a new SFC tandem column screening tool. Chirality 19:184–189

    CAS  Google Scholar 

  169. Barnhart WW, Gahm KH, Thomas S, Notari S, Semin D, Cheetham J (2005) Supercritical fluid chromatography tandem-column method development in pharmaceutical sciences for a mixture of four stereoisomers. J Sep Sci 28:619–626

    CAS  Google Scholar 

  170. Wang Z, Jonca M, Lambros T, Ferguson S, Goodnow R (2007) Exploration of liquid and supercritical fluid chromatographic chiral separation and purification of Butlin-3 – a small molecule antagonist of MDM2. J Pharm Biomed Anal 45:720–729

    CAS  Google Scholar 

  171. Bargmann-Leyder N, Tambute A, Caude M (1995) A comparison of LC and SFC for cellulose- and amylose-derived chiral stationary phases. Chirality 7:311–325

    CAS  Google Scholar 

  172. Macaudibre P, Caude M, Rosset R, Tambut A (1989) CO2 supercritical fluid chromatography with chiral stationary phases: a promising coupling for the resolution of various racemates. J Chromatogr Sci 27:383–394

    Google Scholar 

  173. Macaudibre P, Caude M, Rosset R, Tambut A (1989) Chiral resolution in SFC: mechanisms and applications with various chiral stationary phases. J Chromatogr Sci 27:583–591

    Google Scholar 

  174. Macaudibre P, Lienne M, Caude M, Rosset R, Tambut A (1989) Resolution of π-acid racemates on π-acid chiral stationary phases in normal-phase liquid and subcritical fluid chromatographic modes. J Chromatogr 467:357–372

    Google Scholar 

  175. Anton K, Eppinger J, Frederiksen L, Francotte E, Berger TA, Wilson WH (1994) Chiral separations by packed-column super- and subcritical fluid chromatography. J Chromatogr A 666:395–401

    CAS  Google Scholar 

  176. Chankvetadze B, Yamamoto C, Okamoto Y (2001) Enantioseparation of selected chiral sulfoxides using polysaccharide-type chiral stationary phases and polar organic, polar aqueous–organic and normal-phase eluents. J Chromatogr A 922:127–137

    CAS  Google Scholar 

  177. Matthijs N, Maftouh M, Vander Heyden Y (2006) Chiral separation strategy in polar organic solvent chromatography and performance comparison with normal-phase liquid and supercritical-fluid chromatography. J Sep Sci 29:1353–1362

    CAS  Google Scholar 

  178. Cass QB, Batigalhia F (2003) Enantiomeric resolution of a series of chiral sulfoxides by high-performance liquid chromatography on polysaccharide-based columns with multimodal elution. J Chromatogr A 987:445–452

    CAS  Google Scholar 

  179. Siret L, Bargrmann N, Tambute A, Caude M (1992) Direct enantiomeric separation of β-blockers on ChyRoSine-A by supercritical fluid chromatography: supercritical carbon dioxide as transient in situ derivatizing agent. Chirality 4:252–262

    CAS  Google Scholar 

  180. Toribio L, Del Nozal MJ, Bernal JL, Alonso C, Jimenez JJ (2005) Comparative study of the enantioselective separation of several antiulcer drugs by high-performance liquid chromatography and supercritical fluid chromatography. J Chromatogr A 1091:118–123

    CAS  Google Scholar 

  181. Yaku K, Aoe K, Nishimura N, Sato T, Morishita F (1997) Chiral resolution of four optical isomers of diltiazem hydrochloride on Chiralcel columns by packed-column supercritical fluid chromatography. J Chromatogr A 785:185–193

    CAS  Google Scholar 

  182. Yaku K, Aoe K, Nishimura N, Morishita F (1999) Thermodynamic study and separation mechanism of diltiazem optical isomers in packed-column supercritical fluid chromatography. J Chromatogr A 848:337–345

    CAS  Google Scholar 

  183. Bargmann-Leyder N, Sella C, Bauer D, Tambute A, Caude M (1995) Supercritical fluid chromatographic separation of beta-blockers on Chyrosine-A: investigation of the chiral recognition mechanism using molecular modeling. Anal Chem 67:952–958

    CAS  Google Scholar 

  184. Medvedovici A, Sandra P, Tortblo L, David F (1997) Chiral packed column subcritical fluid chromatography on polysaccharide and macrocyclic antibiotic chiral stationary phases. J Chromatogr A 785:159–171

    CAS  Google Scholar 

  185. Mourier PA, Eliot E, Caude MH, Rosset RH, Tambute AG (1985) Supercritical and subcritical fluid chromatography on a chiral stationary phase for the resolution of phosphine oxide enantiomers. Anal Chem 57:2819–2823

    CAS  Google Scholar 

  186. MaCaudiere P, Tambute A, Caude M, Rosset R, Alembik MA, Wainer IW (1986) Resolution of enantiomeric amides on a Pirkle-type chiral stationary phase, a comparison of subcritical fluid and liquid chromatographic approaches. J Chromatogr 371:177–193

    CAS  Google Scholar 

  187. MaCaudiere P, Lienne M, Caude M, Rosset R, Tambute A (1989) Resolution of π-acid racemates on π-acid chiral stationary phases in normal-phase liquid and subcritical fluid chromatographic modes: a unique reversal of elution order on changing the nature of the achiral modifier. J Chromatogr 467:357–372

    CAS  Google Scholar 

  188. Blum AM, Lynam KG, Nicolas EC (1994) Use of a new Pirkle-type chiral stationary phase in analytical and preparative subcritical fluid chromatography of pharmaceutical compounds. Chirality 6:302–313

    CAS  Google Scholar 

  189. Xiao TL, Gasper MP, Armstrong DW (2007) Macrocyclic antibiotics. In: Wilson ID, Cooke M, Poole CF (eds) Encyclopedia of separation science, vol 10. Elsevier Science Ltd. doi:10.1016/B978-012226770-3/10684-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Lingfeng He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

He, B.L. (2010). Chiral Recognition Mechanism: Practical Considerations for Pharmaceutical Analysis of Chiral Compounds. In: Berthod, A. (eds) Chiral Recognition in Separation Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12445-7_6

Download citation

Publish with us

Policies and ethics