Towards Timbre Modeling of Sounds Inside Accelerating Cars

  • Jean-François Sciabica
  • Marie-Céline Bezat
  • Vincent Roussarie
  • Richard Kronland-Martinet
  • Sølvi Ystad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5954)

Abstract

Quality investigations and design of interior car sounds constitute an important challenge for the car industry. Such sounds are complex and time-varying, inducing considerable timbre variations depending on the driving conditions. An interior car sound is indeed a mixture between several sound sources, with two main contributions, i.e. the engine noise on the one hand and the aerodynamic and tire-road noise on the other. Masking phenomena occur between these two components and should be considered when studying perceptive attributes of interior car sounds in order to identify relevant signal parameters. By combining sensory analysis and signal analysis associated with an auditory model, a relation between a reduced number of signal parameters and perceptive attributes can be found. This approach has enabled us to propose timbre descriptors based on the tristimulus criterion that reflect the dynamic behavior of a sound inside an accelerating car.

Keywords

Interior car noise auditory representation timbre modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bisping, R.: Car Interior Sound Quality: Experimental Analysis by Synthesis. Acta Acustica united with Acustica 83, 813–818 (1997)Google Scholar
  2. 2.
    Chouard, N., Hempel, T.: A semantic differential design especially developed for the evaluation of interior car sounds. J. Acoust. Soc. Am. 105(2) (1999)Google Scholar
  3. 3.
    Kubo, N., Mellert, V., Weber, R., Meschke, J.: Categorization of engine sound. In: Proceedings of the Internoise, Prague (2004)Google Scholar
  4. 4.
    Hansen, H., Weber, R., Letens, U.: Quantifying tonal phenomena in interior car sound. In: Proceedings of the forum acusticum, Budapest (2005)Google Scholar
  5. 5.
    Richard, F., Costes, F., Sciabica, J.-F., Roussarie, V.: Vehicle Acoustic specifications using masking models. In: Proceedings of the Internoise, Istanbul (2007)Google Scholar
  6. 6.
    Hawkins, J.H., Stevens, S.S.: The masking of pure tones and of speech by white noise. J. Acoust. Soc. Am. 22, 6–13 (1950)CrossRefGoogle Scholar
  7. 7.
    Bezat, M.C.: Perception des bruits d’impact: Application au bruit de fermeture de porte automobile. Thèse de Doctorat en acoustique, Université de Provence (2007)Google Scholar
  8. 8.
    Pollard, H., Jansson, B.: A tristimulus method for the specification of musical timbre. Acta Acustica united with Acustica 51, 162–171 (1982)Google Scholar
  9. 9.
    Roussarie, V., Richard, F.: Sound design in car passenger compartment: Process and tool for the control of engine sound character. Journées du Design Sonore (2004p)Google Scholar
  10. 10.
    Rodet, X.: Musical Sound Signal Analysis/Synthesis: Sinusoidal Residual and Elementary Waveform Models, TFTS 1997 (IEEE Time-Frequency and Time-Scale Workshop 1997), Coventry, Grande Bretagne (1997)Google Scholar
  11. 11.
    Rodet, X., Depalle, P.: Spectral envelopes and inverse FFT synthesis. In: Proceedings of the 93rd Audio Engineering Society Convention (1992)Google Scholar
  12. 12.
    Zadorin, L.: Granular synthesis: an introduction. Queensland University of technology (1997)Google Scholar
  13. 13.
    Glasberg, B.R., Moore, B.C.J.: Development and Evaluation of a Model for Predicting the Audibility of Time-Varying Sounds in the Presence of Background Sounds. J. Audio Eng. Soc. 53, 906–918 (2005)Google Scholar
  14. 14.
    Hohmann, V.: Frequency analysis and synthesis using a Gammatone filterbank. Acta Acustica United with Acustica 88, 433–442 (2002)Google Scholar
  15. 15.
    Hewitt, M.J., Meddis, R.: Implementation details of a computation model of the inner hair-cell/auditory-nerve synapse. J. Acoustic. Soc. Am. 87(4), 1813–1816 (1990)CrossRefGoogle Scholar
  16. 16.
    Gnansia, D.: Modèle auditif en temps reel. Mémoire de stage, Rapport de stage du Master ATIAM, Université Pierre et Marie Curie (2005)Google Scholar
  17. 17.
    Slaney, M., Naar, D., Lyon, R.F.: Auditory Model Inversion for Sound Separation. In: Proc. IEEE-ICASSP, Adelaide (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jean-François Sciabica
    • 1
    • 2
  • Marie-Céline Bezat
    • 1
  • Vincent Roussarie
    • 1
  • Richard Kronland-Martinet
    • 2
  • Sølvi Ystad
    • 2
  1. 1.PSA Peugeot-CitroënVélizy-VillacoublayFrance
  2. 2.LMACentre National de la Recherche ScientifiqueMarseille cedex 20

Personalised recommendations