A Model-Based Ambient Agent Providing Support in Handling Desire and Temptation

  • Mark Hoogendoorn
  • Zulfiqar A. Memon
  • Jan Treur
  • Muhammad Umair
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 71)


An ambient agent system is presented estimating a human’s dynamics of desiring and being tempted. The agent is equipped with a dynamical model of the human’s processes which describes how a desire relates to responses in the form of being prepared for certain actions, which in turn relate to feelings which can be biased, due to experiences in the past. It is shown how by use of this dynamical model, the ambient agent is able to predict and assess a human’s desire state, and his or her preparation for certain actions, and use this assessment to suggest alternatives to avoid falling for certain temptations.


Ambient Agent Dynamical Model Desire Temptation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aarts, E., Collier, R., van Loenen, E., de Ruyter, B. (eds.): EUSAI 2003. LNCS, vol. 2875. Springer, Heidelberg (2003)MATHGoogle Scholar
  2. 2.
    Bechara, A., Damasio, A.: The Somatic Marker Hypothesis: a neural theory of economic decision. Games and Economic Behavior 52, 336–372 (2004)CrossRefGoogle Scholar
  3. 3.
    Bi, G.Q., Poo, M.M.: Synaptic Modifications by Correlated Activity: Hebb’s Postulate Revisited. Ann. Rev. Neurosci. 24, 139–166 (2001)CrossRefGoogle Scholar
  4. 4.
    Bosse, T., Hoogendoorn, M., Klein, M., Treur, J.: A Generic Agent Architecture for Human-Aware Ambient Computing. In: Mangina, E., et al. (eds.) Agent-Based Ubiquitous Computing. Ambient and Pervasive Intelligence, vol. 1, pp. 35–62. World Scientific Publishers/Atlantis Press (2009)Google Scholar
  5. 5.
    Bosse, T., Jonker, C.M., van der Meij, L., Sharpanskykh, A., Treur, J.: Specification and Verification of Dynamics in Agent Models. Int. Journal of Cooperative Information Systems 18, 167–193 (2009)CrossRefGoogle Scholar
  6. 6.
    Bosse, T., Jonker, C.M., van der Meij, L., Treur, J.: A Language and Environment for Analysis of Dynamics by Simulation. International Journal of Artificial Intelligence Tools 16, 435–464 (2007)CrossRefGoogle Scholar
  7. 7.
    Damasio, A.: Descartes’ Error: Emotion, Reason and the Human Brain. Papermac, London (1994)Google Scholar
  8. 8.
    Damasio, A.: The Somatic Marker Hypothesis and the Possible Functions of the Prefrontal Cortex. Philosophical Trans. of the Royal Society: Biological Sciences 351, 1413–1420 (1996)CrossRefGoogle Scholar
  9. 9.
    Damasio, A.: The Feeling of What Happens. Body and Emotion in the Making of Consciousness. Harcourt Brace, New York (1999)Google Scholar
  10. 10.
    Damasio, A.: Looking for Spinoza. Vintage books, London (2004)Google Scholar
  11. 11.
    Eich, E., Kihlstrom, J.F., Bower, G.H., Forgas, J.P., Niedenthal, P.M.: Cognition and Emotion. Oxford University Press, New York (2000)Google Scholar
  12. 12.
    Gärdenfors, P.: How Homo Became Sapiens: On the Evolution of Thinking. Oxford University Press, Oxford (2003)Google Scholar
  13. 13.
    Gerstner, W., Kirstner, W.M.: Mathematical formulations of Hebbian learning. Biol. Cybern. 87, 404–415 (2002)Google Scholar
  14. 14.
    Goldman, A.I.: Simulating Minds: the Philosophy, Psychology and Neuroscience of Mindreading. Oxford University Press, Oxford (2006)Google Scholar
  15. 15.
    Hebb, D.: The Organisation of Behavior. Wiley, New York (1949)Google Scholar
  16. 16.
    Marsella, S.C., Pynadath, D.V., Read, S.J.: PsychSim: Agent-based modeling of social interaction and influence. In: Lovett, M., et al. (eds.) Proc. of the Int. Conf. on Cognitive Modelling, ICCM 2004, pp. 243–248 (2004)Google Scholar
  17. 17.
    Niedenthal, P.M.: Embodying Emotion. Science 316, 1002–1005 (2007)CrossRefGoogle Scholar
  18. 18.
    Riva, G., Vatalaro, F., Davide, F., Alcañiz, M. (eds.): Ambient Intelligence. IOS Press, Amsterdam (2005)Google Scholar
  19. 19.
    Winkielman, P., Niedenthal, P.M., Oberman, L.M.: Embodied Perspective on Emotion-Cognition Interactions. In: Pineda, J.A. (ed.) Mirror Neuron Systems: the Role of Mirroring Processes in Social Cognition, pp. 235–257. Springer Science, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mark Hoogendoorn
    • 1
  • Zulfiqar A. Memon
    • 2
  • Jan Treur
    • 1
  • Muhammad Umair
    • 3
  1. 1.Department of Artificial IntelligenceVU UniversityAmsterdamThe Netherlands
  2. 2.Sukkur Institute of Business Administration (Sukkur IBA)SukkurPakistan
  3. 3.Department of Computer ScienceCOMSATS Institute of ITLahorePakistan

Personalised recommendations