Advertisement

Agent-Based Model of Kanban Flows in the Environment with High Demand Variances

  • Paulina Golińska
  • Joanna Oleśków-Szłapka
  • Agnieszka Stachowiak
  • Paweł Rudiak
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 71)

Abstract

The following paper introduces a very interesting and quite common problem of dealing with high demand variance. The company, in which the problem was identified, is of automotive industry and it produces elements of vehicles interior furnishing. The flows of materials and information in the company are presented and discussed and kanbans used to manage the flows are introduced. The solution of the problem is presented, as well as its model based on multi-agent model. The model is to be used in simulation testing efficiency of solution suggested in dynamic environment.

Keywords

Kanban High-demand Agent-based model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lin, G.Y., Solberg, J.J.: An agent-based flexible routing manufacturing control simulation system. In: Proceedings of the winter simulation conference, Lake Buena Vista, FL (1994)Google Scholar
  2. 2.
    Martins, K., Lewandrowski, U.: Inventory safety stocks of Kanban control systems. Prod. Planning Control 10(6), 520–529 (1999)CrossRefGoogle Scholar
  3. 3.
    Shen, W., Norrie, D.H.: Agent-based systems for intelligent manufacturing: a state-of-the-art survey. Knowl. Inf. Syst. 1(2), 129–156 (1999)Google Scholar
  4. 4.
    Tommelein, I.D., Weissenberger, M.: More Just-in-Time: location of buffers in structural steel supply and construction processes. In: Proceedings IGLC-7, University of California, Berkeley, CA, USA, July 26-28 (1999)Google Scholar
  5. 5.
    Schonberger, R.J.: The Kanban System. In: Voss, C.A. (ed.) Just-In-Time Manufacture, pp. 59–71. IFS Ltd., UK (1987)Google Scholar
  6. 6.
    Monden, Y.: Toyota Production System. Institute of Industrial Engineers, Norcross (1983)Google Scholar
  7. 7.
    Krishnamurthy, A., Suri, R., Vernon, M.: Re-examining the performance of MRP and kanban material control strategies for multi-product flexible manufacturing systems. Int. J. Flex Manuf. Syst. 16(2), 123–150 (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Kochel, P., Nieländer, U.: Kanban optimization by simulation and evolution. Produc. Planning Control 13(8), 725–734 (2002)CrossRefGoogle Scholar
  9. 9.
    Gupta, S.M., Yay, A.-T.: The effect of sudden material handling system breakdown on the performance of a JIT system. Int. J. Produc. Res. 36(7), 1935–1960 (1998)zbMATHCrossRefGoogle Scholar
  10. 10.
    Kochel, P., Nieländer, U., Sturm, M.: KASIMIR—object-oriented KAnban SIMulation Imaging Reality. Research report, Chemnitzer Informatik-Berichte CSR-01-03. Chemnitz University of Technology, Chemnitz (2001)Google Scholar
  11. 11.
    Andijani, A.A.: A multi-criterion approach for Kanban allocations. Omega Int. J. Manage Sci. 26, 483–493 (1998)CrossRefGoogle Scholar
  12. 12.
    Berkley, B.J., Kiran, A.S.: A simulation study of sequencing rules in a Kanban-controlled flow shop. Decis. Sci. 22, 559–582 (1991)CrossRefGoogle Scholar
  13. 13.
    Hum, S.H., Lee, C.K.: JIT scheduling rules: a simulation evaluation. Omega Int. J. Manage Sci. 26, 381–395 (1998)CrossRefGoogle Scholar
  14. 14.
    Berkley, B.J.: Effect of buffer capacity and sequencing rules on singlecard Kanban system performance. Int. J. Produc. Res. 31, 2875–2893 (1993)CrossRefGoogle Scholar
  15. 15.
    Savsar, M.: Effects of Kanban withdrawal policies and other factors on the performance of JIT systems: a simulation study. Int. J. Produc. Res. 34, 2879–2899 (1996)zbMATHCrossRefGoogle Scholar
  16. 16.
    Karaesmen, F., Dallery, Y.: A performance comparison of pull type control mechanisms for multi-stage production control. Int. J. Produc. Econ. 68, 59–71 (2000)CrossRefGoogle Scholar
  17. 17.
    Yavuz, I.H., Satir, A.: A Kanban-based simulation study of a mixed model Just-in-Time manufacturing line. Int. J. Produc. Res. 33, 1027–1048 (1995)zbMATHCrossRefGoogle Scholar
  18. 18.
  19. 19.
    Hao, Q., Shen, W.: Implementing a hybrid simulation model for a Kanban-based material handling system. Robotics and Computer-Integrated Manufacturing 24, 635–646 (2008)CrossRefGoogle Scholar
  20. 20.
    Chai, L.S.: e-based inter-enterprise supply chain Kanban for demand and order fulfilment management. SIMTech technical reports (STR_V8_N4_09_POM) 8(4) (October-December 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Paulina Golińska
    • 1
  • Joanna Oleśków-Szłapka
    • 1
  • Agnieszka Stachowiak
    • 1
  • Paweł Rudiak
    • 1
  1. 1.Institute of Management Engineering, Department of Informatics and ManagementPoznan University of TechnologyPoznańPoland

Personalised recommendations