Advertisement

Towards Soccer Simulation as a Testbed for Adaptive Systems and Agreement Technologies

  • Víctor Sánchez-Anguix
  • Juan A. García-Pardo
  • Ana García-Fornes
  • Vicente Julián
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 71)

Abstract

Agreement technologies and adaptive systems have arisen as promising mechanisms to design open dynamic multi-agent systems where there may be complex interactions and environmental conditions may frequently change. In this paper, we propose a development framework whose goal is to ease the deployment of adaptive techniques and agreement technologies in the soccer simulation domain. The framework provides a middleware that abstracts researchers from simulation details, thus they can focus on the particular study of their algorithms. Moreover, we analyze the soccer domain to identify how the types of adaptation and agreement technologies found in the literature are also present in the domain.

Keywords

Multiagent System Institutional Level Agent Society Adaptive Technique Soccer Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberola, J.M., Such, J.M., Espinosa, A., Botti, V., García-Fornes, A.: Scalable and efficient multiagent platform closer to the operating system. In: Artificial Intelligence Research and Development, vol. 184, pp. 7–15. IOS Press, Amsterdam (2008)Google Scholar
  2. 2.
    Dignum, V., Dignum, F.: Towards an agent-based infrastructure to support virtual organisations. In: PRO-VE 2002, Deventer, The Netherlands, pp. 363–370. Kluwer, B.V., Dordrecht (2002)Google Scholar
  3. 3.
    Dignum, V., Dignum, F., Sonenberg, L.: Towards dynamic reorganization of agent societies. In: Proceedings of Workshop on Coordination in Emergent Agent Societies, pp. 22–27. Citeseer (2004)Google Scholar
  4. 4.
    Drogoul, A., Ferber, J.: Multi-agent simulation as a tool for modeling societies: Application to social differentiation in ant colonies. In: Castelfranchi, C., Werner, E. (eds.) MAAMAW 1992. LNCS, vol. 830, pp. 3–23. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Endert, H., Wetzker, R., Karbe, T., Heßler, A., Brossmann, F., Büttner, P.: The dainamite agent framework. DAI Labor, TU Berlin (November 2006)Google Scholar
  6. 6.
    Giret, A., Julian, V., Rebollo, M., Argente, E., Carrascosa, C., Botti, V.: An open architecture for service-oriented virtual organizations. In: PROMAS 2009, pp. 74–88 (2009)Google Scholar
  7. 7.
    Guttman, R.H., Moukas, A.G., Maes, P.: Agent-mediated electronic commerce: a survey. Knowl. Eng. Rev. 13(2), 147–159 (1998)CrossRefGoogle Scholar
  8. 8.
    He, M., Jennings, N.R., Leung, H.-F.: On agent-mediated electronic commerce. IEEE Trans. on Knowl. and Data Eng. 15(4), 985–1003 (2003)CrossRefGoogle Scholar
  9. 9.
    Helleboogh, A., Vizzari, G., Uhrmacher, A., Michel, F.: Modeling dynamic environments in multi-agent simulation. Auton. Agents Multi-Agent Syst. 14(1), 87–116 (2007)CrossRefGoogle Scholar
  10. 10.
    Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: Robocup: The robot world cup initiative. In: AGENTS 1997, pp. 340–347. ACM, New York (1997)CrossRefGoogle Scholar
  11. 11.
    Luck, M., McBurney, P.: Computing as interaction: agent and agreement technologies. In: Proc. of the 2008 IEEE International Conference on Distributed Human-Machine Systems (2008)Google Scholar
  12. 12.
    Matos, N., Sierra, C.: Evolutionary computing and negotiating agents. In: Noriega, P., Sierra, C. (eds.) AMET 1998 and AMEC 1998. LNCS (LNAI), vol. 1571, pp. 126–150. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Narayanan, V., Jennings, N.R.: Learning to negotiate optimally in non-stationary environments. In: Klusch, M., Rovatsos, M., Payne, T.R. (eds.) CIA 2006. LNCS (LNAI), vol. 4149, pp. 288–300. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Norman, T.J., Preece, A.D., Chalmers, S., Jennings, N.R., Luck, M., Dang, V.D., Nguyen, T.D., Deora, V., Shao, J., Gray, W.A., Fiddian, N.J.: Agent-based formation of virtual organisations. Knowl.-Based Syst. 17(2-4), 103–111 (2004)CrossRefGoogle Scholar
  15. 15.
    Stone, P., Sutton, R.S., Kuhlmann, G.: Reinforcement learning for RoboCup-soccer keepaway. Adapt. Behav. 13(3), 165–188 (2005)CrossRefGoogle Scholar
  16. 16.
    Stone, P., Veloso, M.M.: Layered learning and flexible teamwork in robocup simulation agents. In: Veloso, M.M., Pagello, E., Kitano, H. (eds.) RoboCup 1999. LNCS (LNAI), vol. 1856, pp. 495–508. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Val, E.D., Criado, N., Rebollo, M., Argente, E., Julian, V.: Service-oriented framework for virtual organizations. In: ICAI 2009, vol. 1, pp. 108–114. CSREA Press (2009)Google Scholar
  18. 18.
    Weiß, G.: Adaptation and learning in multi-agent systems: Some remarks and a bibliography. In: IJCAI 1995: Proc. of the Workshop on Adaption and Learning in Multiagent Systems, London, UK, pp. 1–21. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Víctor Sánchez-Anguix
    • 1
  • Juan A. García-Pardo
    • 1
  • Ana García-Fornes
    • 1
  • Vicente Julián
    • 1
  1. 1.Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations