Skip to main content

Key Innovations Versus Key Opportunities: Identifying Causes of Rapid Radiations in Derived Ferns

  • Chapter
  • First Online:
Evolution in Action

Abstract

Biological radiations, e.g., adaptive radiations and rapid radiations, are widely accepted as one of the major events contributing to the diversification of the tree of life, but many aspects of these events are poorly understood (Schluter 2000; Gavrilets and Losos 2009). The classical examples for biological radiations are adaptive radiations, in which a lineage occupies a range of niches by diversifying in a relative short time until all niches are filled. However, not all radiations necessarily fulfil this pattern and alternative scenarios such as rapid radiations are widely considered. A major setback is the lack of a generally accepted definition of biological radiations (Schluter 2000). Empirical studies on the frequency and contribution of radiation, however, need concise theoretical concepts and criteria such as temporal increase of diversification rate or the absolute number of species to define biological radiations (Schluter 2000; Gavrilets and Losos 2009). Thus, our knowledge is limited by both the disparity of applied concepts and the limited amount of studies scrutinizing evidence for as many lineages of organisms as possible. It is therefore impossible to estimate quantitatively the contribution of radiations to the diversity of life on earth today. A recent study on 101 phylogenies discovered evidence for a hypothesis that explains the constant accumulation of biodiversity through rare single speciation events instead of species radiations (Venditti et al. 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bollback JP (2006) SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7:88

    Article  PubMed  Google Scholar 

  • Bortolussi N, Durand E, Blum MGB, Francois O (2006) APTreeshae: statistical analysis of phylogenetic tree shape. Bioinformatics 22:363–364

    Article  PubMed  CAS  Google Scholar 

  • Chan KMA, Moore BR (2002) Whole-tree methods for detecting differential diversification rates. Syst Biol 51:855–865

    Article  PubMed  Google Scholar 

  • Clark JR, Ree RH, Alfaro ME, King MG, Wagner WL, Roalson EH (2008) A comparative study in ancestral range reconstruction methods: retracing the uncertain histories of insulare lineages. Syst Biol 57:693–707

    Article  PubMed  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  Google Scholar 

  • Gavrilets S, Loso JB (2009) Adaptive radiation: contrasting theory with data. Science 323:732–737

    Article  PubMed  CAS  Google Scholar 

  • Gay H (1993) Animal-fed plants: an investigation into the uptake of ant-derived nutrients by the far eastern epiphytic fern Lecanopteris (Polypodiaceae). Biol J Linn Soc 50:221–233

    Article  Google Scholar 

  • Hall R (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions and animations. J Asian Earth Sci 20:353–434

    Article  Google Scholar 

  • Haufler CH, Grammer WA, Hennipman E, Ranker TA, Smith AR, Schneider H (2003) Systematics of the ant-fern genus Lecanopteris (Polypodiaceae): testing phylogenetic hypotheses with DNA sequences. Syst Bot 28:217–227

    Google Scholar 

  • Hodges SA, Arnold ML (1995) Spurring plant diversification: are floral nectar spurs a key innovation? Proc R Soc Lond B 262:343–348

    Article  Google Scholar 

  • Janssen T, Schneider H (2005) Exploring the evolution of humus collecting leaves in drynarioid ferns (Polypodiaceae, Polypodiidae). Plant Syst Evol 252:175–197

    Article  Google Scholar 

  • Janssen T, Bystriakova N, Rakotondrainive F, Coomes D, Labat J-N, Schneider H (2008) Neoendemism in Madagascan scaly tree ferns results from recent, coincident diversification bursts. Evolution 62:1876–1889

    Article  PubMed  Google Scholar 

  • Janssen T, Kreier H-P, Schneider H (2007) Origin and diversification of African ferns with special emphasis on Polypodiaceae. Brittonia 59:159–181

    Article  Google Scholar 

  • Kreier H-P, Schneider H (2006a) Phylogeny and biogeography of the staghorn fern genus Platycerium (Polypodiaceae, Polypododae). Am J Bot 93:217–225

    Article  CAS  Google Scholar 

  • Kreier H-P, Schneider H (2006b) Reinstatement of Loxogramme dictyopteris, based on phylogenetic evidence, for New Zealand endemic fern, Anarthropteris lanceolata. Aust Syst Bot 19:309–314

    Article  CAS  Google Scholar 

  • Kreier H-P, Rex M, Weising K, Kessler M, Smith AR, Schneider H (2008a) Inferring the diversification of the epiphytic fern genus Serpocaulon (Polypodiaceae) in South America using chloroplast sequences and AFLPs. Plant Syst Evol 274:1–16

    Article  CAS  Google Scholar 

  • Kreier H-P, Rojas-Alvarado SAR, Schneider H (2007) Hyalotrichopteris is indeed a Campyloneurum (Polypodiaceae). Am Fern J 97:127–135

    Article  Google Scholar 

  • Kreier H-P, Zhang X-C, Muth H, Schneider H (2008b) The microsoroid ferns: inferring the relationships of a highly diverse lineage of Paleotropical epiphytic ferns (Polypodiaceae, Polypodiidae). Mol Phylogenet Evol 48:1155–1167

    Article  PubMed  Google Scholar 

  • Nee S, May RM, Harvey PH (1994) The reconstructed evolutionary process. Philos Trans R Soc Lond B 344:305–311

    Article  CAS  Google Scholar 

  • Maddison WP, Maddison DW (2009) Mesquite version 2.72. http://mesquiteproject.org

  • Maddison WP, Midford PE, Otto SP (2007) Estimating a binary character’s effect on speciation and extinction. Syst Biol 56:701–710

    Article  PubMed  Google Scholar 

  • Mosburger V, Utescher T, Dilcher DL (2005) Cenozoic contiental climatic evolution of Central Europe. Proc Natl Acad Sci USA 102:14964–14969

    Article  Google Scholar 

  • Nylander JAA, Olsson U, Alstrom P, Sanmartin I (2008) Accounting for phylogenetic uncertainty in biogeography: a Bayesian approach to dispersal-vicariance analysis of the trushes (Aves: Turdus). Syst Biol 57:257–268

    Article  PubMed  Google Scholar 

  • Otto EM, Janssen T, Kreier H-P, Schneider H (2009) New insights into the phylogeny of Pleopeltis and related Neotropical genera (Polypodiacae, Polypodiopsida). Mol Phylogenet Evol 53:190–201

    Article  PubMed  CAS  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  PubMed  CAS  Google Scholar 

  • Purvis A, Orme CDL, Toomey NH, Peason PN (2009) Temporal patterns in diversification rates. In: Butlin Rm Bridle J, Schluter D (eds) Speciation and patterns of diversity. Cambridge University Press, Cambridge, pp 278–300

    Chapter  Google Scholar 

  • Pybus OG, Harvey PH (2000) Testing macro-evolutionary models using incomplete molecular phylogenies. Proc R Soc Lond B 267:2267–2272

    Article  CAS  Google Scholar 

  • Rabosky DL (2006) LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evol Bioinform 2:247–250

    Google Scholar 

  • Rabosky DL, Lovette IJ (2008) Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution 62:1866–1875

    Article  PubMed  Google Scholar 

  • Ranker TA, Smith AR, Parris BS, Geiger JMO, Haufler CH, Struab SCK, Schneider H (2004) Phylogeny and evolution of grammitid ferns (Grammitidaceae): a case of rampant morphological homoplasy. Taxon 53:415–428

    Article  Google Scholar 

  • Ree RR (2005) Detecting the historical signature of key innovations using stochastic modles of character evolution and cladogensis. Evolution 59:257–265

    PubMed  Google Scholar 

  • Ricklefs RE (2009) Speciation, extinction and diversity. In: Butlin Rm Bridle J, Schluter D (eds) Speciation and patterns of diversity. Cambridge University Press, Cambridge, pp 257–277

    Chapter  Google Scholar 

  • Ronquist F (1997) Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst Biol 46:195–203

    Article  Google Scholar 

  • Ronquist F, van der Mark P, Huelsenbeck JP (2009) Bayesian phylogenetic analysis using MrBayes. In: Lemey P, Salemi M, Anne-Mieke V (eds) The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. Cambridge University Press, Cambridge, pp 219–236

    Google Scholar 

  • Salino A, Almeide TE, Smith AR, Navarro-Gomez A, Kreier H-P, Schneider H (2008) A new Microgramma (Polypodiaceae) from Brazil and recircumscription of the genus based on phylogenetic evidence. Syst Bot 33:630–635

    Article  Google Scholar 

  • Sanchez-Baracaldo P (2004) Phylogenetics and biogeography of the neotropical fern genera Jamesonia and Eriosorus (Peridaceae). Am J Bot 91:274–284

    Article  PubMed  CAS  Google Scholar 

  • Sanderson M (2006) r8s version 1.71. Analyses of rates (“r8s”) of evolution. http://loco.biosci.arizona.edu/r8s/

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Schmidt HA, von Haeseler A (2009) Phylogenetic inference using maximum likelihood methods. In: Lemey P, Salemi M, Anne-Mieke V (eds) The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. Cambridge University Press, Cambridge, pp 181–198

    Chapter  Google Scholar 

  • Schneider H, Kreier H-P, Hovenkamp P, Janssen T (2008) Phylogenetic relationships of the fern genus Christiopteris shed new light onto the classification and biogeography of drynariod ferns. Bot J Linn Soc 157:645–656

    Article  Google Scholar 

  • Schneider H, Kreier H-P, Perrie L, Brownsey PJ (2006a) The relationships of Microsorum (Polypodiaceae) species occurring in New Zealand. N Z J Bot 4(4):121–127

    Article  Google Scholar 

  • Schneider H, Kreier H-P, Wilson R, Smith AR (2006b) The Synammia enigma: evidence for a temperate lineage of polygrammoid ferns (Polypodiacae, Polypodiidae) in southern South America. Syst Bot 31:30–40

    Article  Google Scholar 

  • Schneider H, Schuettpelz E, Pryer KM, Cranfill Rm Magallon S, Lupia R (2004a) Ferns diversified in the shadow of angiosperms. Nature 428:553–557

    Article  PubMed  CAS  Google Scholar 

  • Schneider H, Smith AR, Cranfill R, Hildebrand TJ, Haufler CH, Ranker TA (2004b) Unraveling the phylogeny of polygrammoid ferns (Polypodiaceae and Grammitidaceae): exploring aspects of the diversification of epiphytic plants. Mol Phylogenet Evol 31:1041–1063

    Article  PubMed  CAS  Google Scholar 

  • Schuettpelz E, Pryer KM (2009) Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. Proc Natl Acad Sci USA 106:11200–11205

    Article  PubMed  CAS  Google Scholar 

  • Smith AR, Kreier H-P, Haufler CH, Ranker TA, Schneider H (2006a) Serpocaulon (Polypodiaceae), a new genus segregated from Polypodium. Taxon 55:919–930

    Article  Google Scholar 

  • Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006b) A classification of extant ferns. Taxon 55:705–731

    Article  Google Scholar 

  • Swofford DL, Sullivan J (2009) Phylogenetic inference based on parsimony and other methods using PAUP*. In: Lemey P, Salemi M, Vandamme A-M (eds) The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. Cambridge University Press, Cambridge, pp 267–288

    Chapter  Google Scholar 

  • van Uffelen G (1991) Fossil Polypodiaceae and their spores. Blumea 36:253–272

    Google Scholar 

  • Venditti C, Meade A, Pagel M (2010) Phylogeneis reveal new interpretation of speciation and the Red Queen. Nature 463:349–352

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Qi X-P, Xiang Q-P, Heinrichs J, Schneider H, Zhang X-C (2010a) Phylogeny of paleotropical fern genus Lepisorus (Polypodiaceae, Polypodiopsida) inferred from four chloroplast regions. Mol Phylogenet Evol 52:211–225

    Article  Google Scholar 

  • Wang L, Wu Z-Q, Xiang Q-P, Heirnichs J, Schneider H, Zhang X-C (2010b) A molecular phylogeny and a revised classification of tribe Lepisoreae (Polypodiaceae) based on an analysis of four plastid DNA regions. Bot J Linn Soc 162:28–38

    Article  Google Scholar 

  • Zachus J, Pagani M, Solan K, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 MA to present. Science 292:686–693

    Article  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the Deutsche Forschungsgemeinschaft (SCHN 758/2-1, SCHN 758/2-2) under the Schwerpunk SPP 1127. We are in debt to all the colleagues who made material accessible to us, especially Alan Smith, Michael Kessler, Masahiro Kato, Chie Tsutsumi, Peter Hovenkamp. We also thank the curators and staff of several herbaria and botanical gardens for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schneider, H., Kreier, HP., Janssen, T., Otto, E., Muth, H., Heinrichs, J. (2010). Key Innovations Versus Key Opportunities: Identifying Causes of Rapid Radiations in Derived Ferns. In: Glaubrecht, M. (eds) Evolution in Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12425-9_4

Download citation

Publish with us

Policies and ethics