Skip to main content

Are Cuticular Hydrocarbons Involved in Speciation of Fungus-Growing Termites (Isoptera: Macrotermitinae)?

  • Chapter
  • First Online:
Evolution in Action

Abstract

Although termites are keystone species of tropical ecosystems, little is known about factors and processes involved during diversification. A prerequisite of all speciation processes is the isolation of lineages. We investigated the potential role of cuticular hydrocarbons for behavioral isolation in termites. The hydrocarbon composition on the cuticle of inquilines matches the composition of the host termite, suggesting that hydrocarbons provide cues for nestmate recognition and, therefore, also have the potential to be involved in species recognition. We studied the variation of cuticular hydrocarbons within and between species of the genus Macrotermes and behavioral responses to these variations. Our results indicate that cuticular hydrocarbons are at least one factor involved in nestmate recognition and might act as a defense strategy against inquilines. However, they do not play a major role during speciation events of higher termites; the situation in lower termites probably differs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams ES (1991) Nest-mate recognition based on heritable odors in the termite Microcerotermes arboreus. Proc Natl Acad Sci USA 88:2031–2034

    Article  PubMed  CAS  Google Scholar 

  • Akino T (2006) Cuticular hydrocarbons of Formica truncorum (Hymenoptera: Formicidae): description of new very long chained hydrocarbon components. Appl Entomol Zool 41:667–677

    Article  CAS  Google Scholar 

  • Bagine RKN, Brandl R, Kaib M (1994) Species delimitation in Macrotermes (Isoptera: Macrotermitidae): Evidence from epicuticular hydrocarbons, morphology, and ecology. Ann Entomol Soc Am 87:498–506

    Google Scholar 

  • Bagnères AG, Killian A, Clément J-L, Lange C (1991) Interspecific recognition among termites of the genus Reticulitermes: evidence for a role for the cuticular hydrocarbons. J Chem Ecol 17:2397–2420

    Article  Google Scholar 

  • Billen J, Morgan ED (1998) Pheromone communication in social insects: sources and secretions. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects: ants, wasps, bees, and termites. Westview, Boulder, Colorado, pp 3–33

    Google Scholar 

  • Blomquist GJ, Tillman JA, Mpuru S, Seybold SJ (1998) The cuticle and cuticular hydrocarbons of insects: structure, function, and biochemistry. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects: ants, wasps, bees, and termites. Westview, Boulder, Colorado, pp 34–54

    Google Scholar 

  • Bordereau C, Robert A, Bonnard O, Le Quere J-L (1991) 3Z, 6Z, 8E)-3, 6, 8-dodecatrien-1-ol: sex pheromone in a higher fungus-growing termite, Pseudacanthotermes spiniger (Isoptera, Macrotermitinae. J Chem Ecol 17:2177–2191

    Article  CAS  Google Scholar 

  • Bouillon A (1981) Mechanisms of species isolation in termites. In: Howse PE, Clément J-L (eds) Biosystematics of social insects. Academic, London, pp 297–308

    Google Scholar 

  • Brandl R, Bagine RKN, Kaib M (1996) The distribution of Schedorhinotermes lamanianus (Isoptera: Rhinotermitidae) and its termitophile Paraclystis (Lepidoptera: Tineidae) in Kenya: its importance for understanding east African biogeography. Global Ecol Biogeogr 5:143–148

    Article  Google Scholar 

  • Brandl R, Hacker M, Bagine RKN, Kaib M (2001) Geographic variation of polygyny in the termite Macrotermes michaelseni (Sjostedt). Insect Soc 48:134–137

    Article  Google Scholar 

  • Brandl R, Hacker M, Bagine RKN, Kaib M (2004) Yearly variation in polygyny in the termite Macrotermes michaelseni (Sjostedt). Insect Soc 51:294–298

    Article  Google Scholar 

  • Brandl R, Hyodo F, von Korff-Schmising M, Maekawa K, Miura T, Takematsu Y, Matsumoto T, Abe T, Bagine RKN, Kaib M (2007) Divergence times in the termite genus Macrotermes (Isoptera: Termitidae). Mol Phylogenet Evol 45:239–250

    Article  PubMed  CAS  Google Scholar 

  • Brown WV, Watson JAL, Lacey MJ (1996) A chemotaxonomic survey using cuticular hydrocarbons of some species of the Australian harvester termite genus Drepanotermes (Isoptera: Termitidae). Sociobiology 27:199–221

    Google Scholar 

  • Brown WV, Rose HA, Lacey MJ (1997) The cuticular hydrocarbons of the soil burrowing cockroach Geoscapheus dilatatus (Saussure) (Blattodea: Blaberidae: Geoscapheinae) indicate species dimorphism. Comp Biochem Physiol B 118:549–562

    Article  Google Scholar 

  • Brown WV, Rose HA, Lacey MJ, Wright K (2000) The cuticular hydrocarbons of the giant soil-burrowing cockroach Macropanesthia rhinoceros Saussure (Blattodea: Blaberidae: Geoscapheinae): analysis with respect to age, sex and location. Comp Biochem Physiol B 127:261–277

    Article  PubMed  CAS  Google Scholar 

  • Brune A (1998) Termite guts: the world’s smallest bioreactors. Trends Biotechnol 16:16–21

    Article  CAS  Google Scholar 

  • Carlin N, Hölldobler B (1986) The kin recognition system of carpenter ants (Camponotus). I. Hierarchical cues in small colonies. Behav Ecol Sociobiol 19:123–134

    Article  Google Scholar 

  • Carlson DA, Service MW (1980) Identification of mosquitoes of Anopheles gambiae species complex A and B by analysis of cuticular components. Science 207:1089–1091

    Article  PubMed  CAS  Google Scholar 

  • Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Statist 45:90–96

    Google Scholar 

  • Clément JL, Bagnères A-G (1998) Nestmate recognition in termites. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects: ants, wasps, bees, and termites. Westview Press, Boulder, Colorado, pp 126–155

    Google Scholar 

  • Clément J-L, Bonavita-Cougourdan A, Lange C (1987) Nestmate recognition and cuticular hydrocarbons in Camponotus vagus Scop. In: Ede J, Rembold H (eds) Chemistry and biology of social insects. Papemy, Munich, Germany, pp 473–474

    Google Scholar 

  • Copren KA, Nelson LJ, Vargo EL, Haverty MI (2005) Phylogenetic analyses of mtDNA sequences corroborate taxonomic designations based on cuticular hydrocarbons in subterranean termites. Mol Phylogenet Evol 35:689–700

    Article  PubMed  CAS  Google Scholar 

  • Coyne JA (1996) Genetics of differences in pheromonal hydrocarbons between Drosophila melanogaster and D. simulans. Genetics 143:353–364

    PubMed  CAS  Google Scholar 

  • Dallerac R, Labeur C, Jallon J, Knipple D, Roelofs W (2000) A Δ9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proc Natl Acad Sci USA 97:9449–9454

    Article  PubMed  CAS  Google Scholar 

  • Darlington JPEC (1994) Nutrition and evolution in fungus-growing termites. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview, Boulder, Colorado, USA

    Google Scholar 

  • Donovan SE, Eggleton P, Dubbin WE, Batchelder M, Dibog L (2001) The effect of a soil-feeding termite, Cubitermes fungifaber (Isoptera: Termitidae) on soil properties: termites may be an important source of soil microhabitat heterogeneity in tropical forests. Pedobiologia 45:1–11

    Article  Google Scholar 

  • Dronnet S, Lohou C, Christides J-P, Bagnères A-G (2006) Cuticular hydrocarbon composition reflects genetic relationship among colonies of the introduced termite Reticulitermes santonensis Feytaud. J Chem Ecol 32:1027–1042

    Article  PubMed  CAS  Google Scholar 

  • Dunn R, Messier S (1999) Evidence for the opposite of the dear enemy phenomenon in termites. J Insect Behav 12:461–464

    Article  Google Scholar 

  • Eggleton P (1999) Termite species description rates and the state of termite taxonomy. Insect Soc 46:1–5

    Article  Google Scholar 

  • Espelie KE, Berisford CW, Dahlsten DL (1996) Use of cuticular hydrocarbons in bark beetle parasitoid taxonomy: a study of Roptrocerus xylophagorum (Ratzeburg) (Hymenoptera: Torymidae) from the United States, Europe and Australia. Comp Biochem Physiol B 113:193–198

    Article  Google Scholar 

  • Estrada-Pena A, Castella J, Moreno JA (1994) Using cuticular hydrocarbon composition to elucidate phylogenies in tick populations (Acari, Ixodidae). Acta Trop 58:51–71

    Article  PubMed  CAS  Google Scholar 

  • Ferveur JF, Jallon JM (1996) Genetic control of male cuticular hydrocarbons in Drosophila melanogaster. Genet Res 67:211–218

    Article  PubMed  CAS  Google Scholar 

  • Florane CB, Bland JM, Husseneder C, Raina AK (2004) Diet-mediated inter-colonial aggression in the Formosan subterranean termite Coptotermes formosanus. J Chem Ecol 30:2559–2574

    Article  PubMed  CAS  Google Scholar 

  • Gibbs AG, Pomonis JG (1995) Physical properties of insect cuticular hydrocarbons: the effects of chain length, methyl-branching and unsaturation. Comp Biochem Physiol B 112:243–249

    Article  Google Scholar 

  • Gibbs AG, Louie AK, Ayala JA (1998) Effects of temperature on cuticular lipids and water balance in a desert Drosophila – is thermal acclimation beneficial? J Exp Biol 210:71–80

    Google Scholar 

  • Guo L, Quilici DR, Chase J, Blomquist GJ (1991) Gut tract microorganisms supply the precursors for methyl-branched hydrocarbon biosynthesis in the termite, Zootermopsis nevadensis. Insect Biochem 21:327–333

    Article  CAS  Google Scholar 

  • Hacker M, Kaib M, Bagine RKN, Epplen JT, Brandl R (2005) Unrelated queens coexist in colonies of the termite Macrotermes michaelseni. Mol Ecol 14:1527–1532

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WD (1964) The genetic evolution of social behaviour. J Theor Biol 71:1–52

    Article  Google Scholar 

  • Hardley NF (1978) Cuticular permeability of desert tenebrionid beetles: correlation with epicuticular hydrocarbons. Insect Biochem 8:17–22

    Article  Google Scholar 

  • Haverty MI, Thorne BL (1989) Agonistic behavior correlated with hydrocarbon phenotypes in dampwood termites, Zootermopsis (Isoptera: Termopsidae). J Insect Behav 2:523–543

    Article  Google Scholar 

  • Haverty MI, Nelson LJ (1997) Cuticular hydrocarbons of Reticulitermes (Isoptera: Rhinotermitidae) from California indicate undescribed species. Comp Biochem Physiol B 111:869–880

    Article  Google Scholar 

  • Haverty MI, Page M, Nelson LJ, Blomquist GJ (1988) Cuticular hydrocarbons of dampwood termites, Zootermopsis: Intra- and intercolony variation and potential as taxonomic characters. J Chem Ecol 14:1035–1058

    Article  CAS  Google Scholar 

  • Haverty MI, Nelson LJ, Page M (1990a) Cuticular hydrocarbons of four populations of Coptotermes formosanus Shiaki in the United States. J Chem Ecol 16:1635–1647

    Article  CAS  Google Scholar 

  • Haverty MI, Thorne BL, Page M (1990b) Surface hydrocarbon components of two species of Nasutitermes from Trinidad. J Chem Ecol 16:2441–2450

    Article  CAS  Google Scholar 

  • Haverty MI, Forschler BT, Nelson LJ (1996) An assessment of the taxonomy of Reticulitermes (Isoptera: Rhinotermitidae) from the southeastern United States based on cuticular hydrocarbons. Sociobiology 28:287–318

    Google Scholar 

  • Haverty MI, Copren KA, Getty GM, Lewis VR (1999a) Agonistic behavior and cuticular hydrocarbon phenotypes of colonies of Reticulitermes (Isoptera: Rhinotermitidae) from Northern Carolina. Ann Entomol Soc Am 92:269–277

    Google Scholar 

  • Haverty MI, Nelson LJ, Forschler BT (1999b) New cuticular hydrocarbon phenotypes of Reticulitermes (Isoptera: Rhinotermitidae) from the United States. Sociobiology 34:1–21

    Google Scholar 

  • Haverty MI, Getty GM, Nelson LJ, Lewis VR (2003) Flight phenology of sympatric populations of Reticulitermes (Isoptera: Rhinotermitidae) in Northern California: disparate flight intervals indicate reproductive isolation among cuticular hydrocarbon phenotypes. Ann Entomol Soc Am 96:828–833

    Article  CAS  Google Scholar 

  • Holt JA, Lepage M (2000) Termites and soil properties. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer, Dordrecht, Netherlands, pp 389–407

    Google Scholar 

  • Howard RW (1993) Cuticular hydrocarbons and chemical communication. In: Stanley-Samuelson DW, Nelson DR (eds) Insects lipids: chemistry, biochemistry and biology. University of Nebraska Press, Lincoln, USA, pp 179–226

    Google Scholar 

  • Howard RW, Blomquist GJ (1982) Chemical ecology and biochemistry of insect hydrocarbons. Annu Rev Entomol 27:149–172

    Article  CAS  Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    Article  PubMed  CAS  Google Scholar 

  • Howard RW, McDaniel CA, Blomquist GJ (1980) Chemical mimicry as an integrating mechanism: cuticular hydrocarbons of a termitophile and its host. Science 210:431–433

    Article  PubMed  CAS  Google Scholar 

  • Howard RW, McDaniel CA, Blomquist GJ (1982) Chemical mimicry as an integrating mechanism for three termitophiles associated with Reticulitermes virginicus (Banks). Psyche 89:157–168

    Article  Google Scholar 

  • Husseneder C, Brandl R, Epplen C, Epplen JT, Kaib M (1998) Variation between and within colonies in the termite: morphology, genomic DNA, and behaviour. Mol Ecol 7:983–990

    Article  CAS  Google Scholar 

  • Jenkins TM, Haverty MI, Basten CJ, Nelson LJ, Page M, Forschler BT (2000) Correlation of mitochondrial haplotypes with cuticular hydrocarbon phenotypes of sympatric Reticulitermes species from the southeastern United States. J Chem Ecol 26:1525–1542

    Article  CAS  Google Scholar 

  • Jmhasly P, Leuthold RH (1999) Interspecific colony recognition in the termites Macrotermes subhyalinus and Macrotermes bellicosus (Isoptera: Termitidae). Insect Soc 46:164–170

    Article  Google Scholar 

  • Kaib M (1985) Defense strategies of termites: a review exemplified by Schedorhinotermes lamanianus. Mitt Dtsch Ges Allg Angew Ent 4:302–306

    Google Scholar 

  • Kaib M (2000) Chemical signals and communication in termites: a review. Mitt Dtsch Ges Allg Angew Ent 12:211–218

    Google Scholar 

  • Kaib M, Brandl R (1992) Distribution, geographic variation and between-colony compatibility of Schedorhinotermes lamanianus in Kenya (Isoptera: Rhinotermitidae). In: Billen J (ed) Biology and evolution of social insects. Leuven University Press, Leuven, Belgium, pp 121–131

    Google Scholar 

  • Kaib M, Brandl R, Bagine RKN (1991) Cuticular hydrocarbon profiles: a valuable tool in termite taxonomy. Naturwissenschaften 78:176–179

    Article  CAS  Google Scholar 

  • Kaib M, Heinze J, Ortius D (1993) Cuticular hydrocarbon profiles in the slave-making ant Harpagoxenus sublaevis and its hosts. Naturwissenschaften 80:281–285

    Article  CAS  Google Scholar 

  • Kaib M, Franke S, Francke W, Brandl R (2002) Cuticular hydrocarbons in a termite: phenotypes and a neighbour-stranger effect. Physiol Entomol 27:189–198

    Article  CAS  Google Scholar 

  • Kaib M, Jmhasly P, Wilfert L, Durka W, Franke S, Francke W, Leuthold RH, Brandl R (2004a) Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus. J Chem Ecol 30:365–385

    Article  PubMed  CAS  Google Scholar 

  • Kaib M, Kinuthia W, Bagine RKN, Brandl R (2004b) Chemical battles in the “castle of clay”. Nature East Africa 34:12–15

    Google Scholar 

  • Kirchner WH, Minkley N (2003) Nestmate discrimination in the harvester termite Hodotermes mossambicus. Insect Soc 50:222–225

    Article  Google Scholar 

  • Kistner DH (2001) Cladistic analysis and taxonomic revision of the termitophilous tribe Termitopaediini (Coleoptera: Staphylinidae) with remarks on their evolution and the behavior of some species. Sociobiology 38:1–278

    Google Scholar 

  • Laduguie N, Robert A, Bonnard O, Vieau F, Le Quere J-L, Semon E, Bordereau C (1994) Isolation and identification of (3Z, 6Z, 8E)-3, 6, 8-dodecatrien-1-ol in Reticulitermes santonensis Feytaud (Isoptera, Rhinotermitidae): roles in worker trail-following and in alate sex-attraction behavior. J Insect Physiol 40:781–787

    Article  CAS  Google Scholar 

  • Lahav S, Soroker V, Hefetz A (1999) Direct behavioral evidence for hydrocarbons as ant recognition discriminator. Naturwissenschaften 86:246–249

    Article  CAS  Google Scholar 

  • Liang D, Silverman J (2000) “You are what you eat”: Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87:412–416

    Article  PubMed  CAS  Google Scholar 

  • Lockey KH (1988) Lipids of the insect cuticle: origin, composition and function. Comp Biochem Physiol B 89:595–645

    Google Scholar 

  • Lockey KH (1991) Insect hydrocarbon classes: implications for chemotaxonomy. Insect Biochem 21:91–97

    Article  CAS  Google Scholar 

  • Lucas C, Pho DB, Jallon JM, Fresneau D (2005) Role of cuticular hydrocarbons in the chemical recognition between ant species in the Pachycondyla villosa species complex. J Insect Physiol 51:1148–1157

    Article  PubMed  CAS  Google Scholar 

  • Marten A, Kaib M, Brandl R (2009) Cuticular hydrocarbon phenotypes do not indicate cryptic species in fungus-growing termites (Isoptera: Macrotermitinae). J Chem Ecol 35:572–579

    Article  PubMed  CAS  Google Scholar 

  • Matsuura K (2001) Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos 92:20–26

    Article  Google Scholar 

  • Obin MS (1986) Nestmate recognition cues in laboratory and field colonies of Solenopsis invicta Buren (Hymenoptera: Formicidae). Effect of environment and role of cuticular hydrocarbons. J Chem Ecol 12:1965–1975

    Article  CAS  Google Scholar 

  • Page RE, Metcalf RH, Metcalf RL, Erickson EH, Lampman RL (1991) Extractable hydrocarbons and kin recognition in honeybee (Apis mellifera L.). J Chem Ecol 17:745–756

    Article  CAS  Google Scholar 

  • Page M, Nelson LJ, Forschler BT, Haverty MI (2002) Cuticular hydrocarbons suggest three lineages in Reticulitermes (Isoptera: Rhinotermitidae) from North America. Comp Biochem Physiol B 131:305–324

    Article  PubMed  Google Scholar 

  • Pan C, Mo J, Cheng M (2006) Influence of diet and soil on inter-colonial aggression of Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology 48:841–848

    Google Scholar 

  • Pasteels JM, Bordereau C (1998) Releaser pheromones in termites. In: Vander Meer RK, Breed MD, Winston ML, Espelie KE (eds) Pheromone communication in social insects. Westview, Oxford, pp 193–215

    Google Scholar 

  • Peppuy A, Robert A, Bordereau C (2004) Species-specific sex pheromones secreted from new sexual glands in two sympatric fungus-growing termites from northern Vietnam. Macrotermes annandalei and M. barneyi. Insect Soc 51:91–98

    Article  Google Scholar 

  • Pomeroy DE (1978) Abundance of large termite mounds in Uganda in relation to their environment. J Appl Ecol 15:51–63

    Article  Google Scholar 

  • Prestwich GD (1983) Chemical systematics of termite exocrine secretions. Annu Rev Ecol Syst 14:287–311

    Article  Google Scholar 

  • Raboudi F, Mezghani M, Makni H, Marrakchi M, Rouault JD, Makni M (2005) Aphid species identification using cuticular hydrocarbons and cytochrome b gene sequences. J Appl Entomol 129:75–80

    Article  CAS  Google Scholar 

  • Ruther J, Sieben S, Schricker B (2002) Nestmate recognition in social wasps: manipulation of hydrocarbon profiles induces aggression in the European hornet. Naturwissenschaften 89:111–114

    Article  PubMed  CAS  Google Scholar 

  • Shelton TG, Grace JK (1996) Revision of agonistic behaviors in the Isoptera. Sociobiology 28:155–176

    Google Scholar 

  • Shorey HH (1973) Behavioral responses to insect pheromones. Annu Rev Entomol 18:349–380

    Article  PubMed  CAS  Google Scholar 

  • Singer TL (1998) Roles of hydrocarbons in the recognition systems of insects. Am Zool 38:394–405

    CAS  Google Scholar 

  • Smith BH, Breed MD (1995) The chemical basis for nestmate recognition and mate discrimination in social insects. In: Cardé RT, Bell WJ (eds) Chemical ecology of insects 2. Chapman & Hall, New York, pp 287–317

    Chapter  Google Scholar 

  • Steiner FM, Schlick-Steiner BC, Nikiforov A, Kalb R, Mistrik R (2002) Cuticular hydrocarbons of Tetramorium ants from Central Europe: analysis of GC-MS data with self-organizing maps (SOM) and implications for systematics. J Chem Ecol 28:2569–2584

    Article  PubMed  CAS  Google Scholar 

  • Su NY, Haverty MI (1991) Agonistic behavior among colonies of the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), from Florida and Hawaii: Lack of correlation with cuticular hydrocarbon composition. J Insect Behav 4:115–128

    Article  Google Scholar 

  • Su NY, Scheffrahn RH (2000) Termites as pests of buildings. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer, Dordrecht, Netherlands, pp 437–453

    Google Scholar 

  • Sugimoto A, Bignell DE, MacDonald JA (2000) Global impact of termites on the carbon cycle and atmospheric trace gases. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer, Dordrecht, Netherlands, pp 409–435

    Google Scholar 

  • Takahashi S, Gassa A (1995) Roles of cuticular hydrocarbons in intra- and interspecific recognition behaviour of two Rhinotermitidae species. J Chem Ecol 21:1837–1845

    Article  CAS  Google Scholar 

  • Takahashi A, Tsaur SC, Coyne JA, Wu CI (2001) The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster. Proc Natl Acad Sci USA 98:3920–3925

    Article  PubMed  CAS  Google Scholar 

  • Takematsu Y, Yamaoka R (1999) Cuticular hydrocarbons of Reticulitermes (Isoptera: Rhinotermitidae) in Japan and neighboring countries as chemotaxonomic characters. Appl Entomol Zool 34:179–188

    CAS  Google Scholar 

  • ter Braak CJF, Smilauer P (2002) Canoco for Windows version 4.5. Biometrics – plant research international, Wageningen, Netherlands

    Google Scholar 

  • Thorne BL, Haverty MI (1991) A review of intracolony, intraspecific and interspecific agonism in termites. Sociobiology 19:115–145

    Google Scholar 

  • Turelli M, Barton NH, Coyne JA (2001) Theory and speciation. Trends Ecol Evol 16:330–343

    Article  PubMed  Google Scholar 

  • Vander Meer RK, Wojcik DP (1982) Chemical mimicry in the myrmecophilous beetle, Myrmecophodius excavaticollis. Science 218:806–808

    Article  CAS  Google Scholar 

  • Vander Meer RK, Morel L (1998) Nestmate recognition in ants. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects: ants, wasps, bees, and termites. Westview, Boulder, Colorado, pp 79–103

    Google Scholar 

  • Watson JAL, Brown WV, Miller LR, Carter FL, Lacey MJ (1989) Taxonomy of Heterotermes (Isoptera: Rhinotermitidae) in south-eastern Australia: cuticular hydrocarbons of workers, and soldier and alate morphology. Syst Entomol 14:299–325

    Article  Google Scholar 

  • Wei J, Mo J, Pan C, Deng T, Cheng M, Chen C (2007) The intestinal microbes inducing the agonistic behavior of inter-colonial individuals in Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology 50:245–256

    Google Scholar 

  • Wood TG (1981) Reproductive isolating mechanisms among species of Microtermes (Isoptera, Termitidae) in the Southern Guinea Savanna near Mokwa, Nigeria. In: Howse PE, Clément J-L (eds) Biosystematics of social insects. Academic, London, pp 309–325

    Google Scholar 

  • Wood TG, Sands WA (1978) The role of termites in ecosystems. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, UK, pp 245–292

    Google Scholar 

  • Ye GY, Li K, Zhu JY, Zhu GH, Hu C (2007) Cuticular hydrocarbon composition in pupal exuviae for taxonomic differentiation of six necrophagous flies. J Med Entomol 44:450–456

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

During our work on the genus Macrotermes several people helped conduct fieldwork, performed behavioral tests or helped to identify the hydrocarbons. We want to thank R. Bagine, S. Franke, W. Francke, and particularly A. Halwas, who did most of the gaschromatography. A native English speaker improved the language of our manuscript. We thank two anonymous reviewers and the handling editor for their comments. The work was supported by the German Science Foundation within the Priority Program 1127 (Radiations – The origin of biodiversity).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Brandl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marten, A., Kaib, M., Brandl, R. (2010). Are Cuticular Hydrocarbons Involved in Speciation of Fungus-Growing Termites (Isoptera: Macrotermitinae)?. In: Glaubrecht, M. (eds) Evolution in Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12425-9_14

Download citation

Publish with us

Policies and ethics